Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emission measurement: High-precision nanoparticle sensor developed

14.03.2017

A research team based in Graz and Villach has developed an exhaust gas analyser that detects tiny particles faster and more accurately.

Diameter of under 0.2 micrometres


Pic 1: The newly developed APCplus exhaust gas analyser has 20 per cent more power in order to count tiny particles faster and more accurately.

©AVL


Pic. 2: Simulated gas saturation of the aerosol-stream in the sensor

©CTR

Reducing atmospheric particulate matter, including the nanoparticles emitted from internal combustion engines, is in the public interest. A team of researchers from CTR Carinthian Tech Research in Villach and AVL List GmbH in Graz has therefore developed a high-precision optical sensor that can even detect tiny particles with a diameter of under 0.2 micrometres (µm).

The size is particularly important because the smaller the particles are, the more harmful they are to health. A tailored, simulation-aided design process has enabled the particle counter to accurately detect the smallest of pollutants and measure them at three times the speed. At the same time, researchers improved the system’s overall stability and control.

Applications for this new development include AVL’s APCplus exhaust analysis product range, which has been on the market since autumn 2016. The device is used in automotive development, monitoring and exhaust gas analysis.

Integrative system modelling and co-design

Of all airborne pollutants, nanoparticles below 200 nanometres (nm) in particular are detected. It is a size that is exceptionally difficult to measure. Detecting the actual particulate emissions therefore requires accurate and reliable sensors. This involves counting the nanoparticles in the air or exhaust gas individually and not as total parameters.

To do so, the nanoparticles are fed into a supersaturated atmosphere. In it they act as condensation nuclei and create an aerosol stream where the droplets can be counted individually. This requires the interaction between the thermal, physical and chemical processes to be carefully managed in order to ensure reliable particle detection.

“We created a comprehensive 3D simulation model on the computer and compared it with experimental data. The challenge lay in the complexity of the measurement principle and mutual dependencies. Only when you research and develop extensively and systematically can the overall system be improved,” says Martin Kraft, CTR’s head of research in photonic system engineering.

More accurate and faster detection

Tristan Reinisch, Product Development Team Leader at AVL, believes research collaboration ultimately results in added value for users: “The nanoparticle sensor’s power has increased by 20 per cent. We thus achieve a high level of selectivity with reference to the nanoparticle diameter and obtain faster count results.” The APCplus nanoparticle counter was developed and produced in Austria. Other developments of this kind are planned.

Strategic research partnership

Research cooperation between AVL and CTR is planned in the long term. Initial basic research started in the first phase (2008-2014) of the COMET centre of excellence programme and is carrying on under the current programme (2015-2022) dedicated to ASSIC (Austrian Smart Systems Integration Research Center).

About CTR Carinthian Tech Research

CTR is the largest non-academic research centre in Carinthia and ranks among Austria’s leading research institutes in the area of smart sensors and systems integration. Its task and objective is to develop innovative sensor technologies (photonic, sensor, micro and nano systems as well as assembly, packaging and integration technologies) for industry and to integrate them in concrete applications. CTR research will therefore play a role in meeting society’s great challenges, such as energy, mobility, health, climate and security.

Services range from feasibility studies, simulations and tests to prototyping and system design. Established in 1997, CTR has filed over 80 patents and conducts research in regional, national and international projects. Research partners include ABB, AT&S, AVL List, Infineon Technologies, Lam Research, EPCOS, Philips Austria, Siemens, TIPS Messtechnik, the European Space Agency (ESA), Vienna University of Technology, Carinthia University of Applied Sciences, Klagenfurt University and Lausanne EPFL.

Weitere Informationen:

http://Further links:
http://www.ctr.at/en
http://www.avl.com/-/APCplus-AVL-Particle-Counter

Mag Birgit Rader-Brunner | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Moon's crust underwent resurfacing after forming from magma ocean
22.11.2017 | University of Texas at Austin

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>