Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emergent resistance network suggests mechanism for colossal magnetoresistance

21.07.2010
Scientists at Stanford University and RIKEN have revealed new clues on the microscopic processes by which resistance in certain materials is dramatically altered by the presence of magnetic fields.

Research by scientists at Stanford University and RIKEN has revealed new clues on the microscopic processes by which resistance in certain materials is dramatically altered by the presence of magnetic fields. Reported in Science, the discovery provides fundamental insights toward the development of radically new memory and switching devices.

Colossal magnetoresistance (CMR), a phenomenon in which enormous variations in resistance are produced by small magnetic field changes, has attracted attention as a means to develop low-power, more compact alternatives to conventional circuits. Unlike semiconductors such as silicon, electrons in the manganites and other transition metal oxides in which CMR occurs interact strongly with each other, held in place by a lattice that constrains their movement. CMR is triggered when a strong magnetic field induces such materials to tip from a charge-ordered insulating phase into a ferromagnetic metallic phase, drastically altering the material’s properties.

An earlier technique developed by the team was successful in producing manganite films only a few dozen nanometers thick capable of undergoing this transition from insulating to metallic phase. To explore the mechanisms underlying this transition, the researchers adapted a microwave impedance microscope to withstand cryogenic temperatures and extreme magnetic fields. Using this microscope, they discovered that under a powerful 9 tesla magnetic field, filamentary metallic domains emerge in the manganite films, forming an interconnected network aligned along the axes of the film substrate.

The first ever evidence of a microscopic mechanism for CMR, the discovery of this network greatly enhances our understanding of microscopic phase transitions in thin film manganites. It also marks a major advance in the race toward new memory and switching devices, whose impact promises to revolutionize computing technology.

For more information, please contact:

Dr. Masashi Kawasaki
Dr. Masao Nakamura
Functional Superstructure Team, Emergent Materials Department
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-1111 (ex. 6323) / Fax: +81-(0)48-467-4703
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>