Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive Quasiparticles Realized

24.05.2012
In quantum physics physical processes in condensed matter and other many-body systems can often be described with quasiparticles.

In Innsbruck, for the first time Rudolf Grimm’s team of physicists has succeeded in experimentally realizing a new quasiparticle – a repulsive polaron – in an ultracold quantum gas. The scientists have published their results in the online issue of the journal Nature.


The potassium atom in the middle (blue) repulses the smaller lithium atoms (yellow). This creates a complex state, which can be described physically as a quasiparticle. In various ways it behaves like a new particle with modified properties. Graphics: Harald Ritsch

Ultracold quantum gases are an ideal experimental model system to simulate physical phenomena in condensed matter. In these gases, many-body states can be realized under highly controlled conditions and interactions between particles are highly tuneable. A research group led by Wittgenstein awardee Rudolf Grimm and START awardee Florian Schreck have now realized and comprehensively analyzed repulsive polarons for the first time. The scientists from the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences and the Institute for Experimental Physics of the University of Innsbruck are international leaders in this field of research.

Elusive partners

To realize repulsive polarons experimentally, Rudolf Grimm and his research team produce an ultracold quantum gas consisting of lithium and potassium atoms in a vacuum chamber. They control particle interaction with electromagnetic fields, and by applying radio-frequency pulses they then drive the potassium atoms into a state where they repulse the surrounding lithium atoms. This complex state can be described physically as quasiparticle because, in various ways, it behaves like a new particle with modified properties. By analyzing the whole energy spectrum of the system, the researchers were able to demonstrate repulsive polarons. “This way we were able to realize and analyze not only attractive but also repulsive polarons,” says Prof Grimm. While attractive polarons have been studied before, the quantum physicist and his team have entered a completely new scientific field with these novel repulsive quasiparticles.

Ideal observation platform

In condensed matter these quasiparticles decay very quickly, which makes it nearly impossible to study them. But also in quantum gases the repulsive properties present difficulties: “Polarons can only exist in a metastable state,“ explains Rudolf Grimm “and their lifetime is crucial for our ability to investigate them at all. We were surprised to find that our polarons showed an almost ten times increased lifetime compared to earlier experiments in similar systems. Our experimental set-up, therefore, provides an ideal platform for a detailed analysis of many-body states that rely on repulsive interactions.“ As a next step the Innsbruck researchers are going to investigate whether separate domains where only lithium or only potassium atoms accumulate are created in a quantum gas consisting of repulsive particles. “This has been suggested in theoretical models but only now we will are able to investigate it experimentally.“

The scientists have published their results in the journal Nature. The experiment was carried out in close cooperation with two theoretical physicists from Denmark and Spain and is financially supported by the Austrian Science Fund within the Special Research Program FoQuS.

Publication: Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture, Christoph Kohstall, Matteo Zaccanti, Michael Jag, Andreas Trenkwalder, Pietro Massignan, Georg M. Bruun, Florian Schreck und Rudolf Grimm. Nature 2012

http://dx.doi.org/10.1038/nature11065

Contacts:
Univ.-Prof. Dr. Rudolf Grimm
Institute for Experimental Physics
University of Innsbruck
phone: +43 512 507 6300
email: Rudolf.Grimm@uibk.ac.at
web: http://www.ultracold.at
Dr. Christian Flatz
Public Relations
University of Innsbruck
phone.: +43 512 507 32022
mobil: +43 676 872532022
email: Christian.Flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.ultracold.at
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>