Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Element Six and Harvard University collaboration on nano-engineered synthetic diamond sets a new quantum information record

08.06.2012
Using synthetic diamond, quantum bit memory can now exceed one second at room temperature, opening up the potential for new solid state quantum based sensors and quantum information processing

Element Six, the world leader in synthetic diamond supermaterials, working in partnership with academics in Harvard University, California Institute of Technology and Max-Planck-Institut für Quantenoptik, has used its Element Six single crystal synthetic diamond grown by chemical vapour deposition (CVD) to demonstrate the capability of quantum bit memory to exceed one second at room temperature.

This study demonstrated the ability of synthetic diamond to provide the read-out of a quantum bit which had preserved its spin polarisation for several minutes and its memory coherence for over a second. This is the first time that such long memory times have been reported for a material at room temperature, giving synthetic diamond a significant advantage over rival materials and technologies that require complex infrastructure which necessitates, for example, cryogenic cooling.

The versatility, robustness, and potential scalability of this synthetic diamond system may allow for new applications in quantum information science and quantum based sensors used, for example, in nano-scale imaging of chemical/biological processes.

The synthetic diamond technical work was completed by the Element Six synthetic diamond R&D team based at Ascot in the UK who developed novel processes for growing synthetic diamond using chemical vapour deposition (CVD) techniques. Steve Coe, Element Six Group Innovation Director, explained the success of the collaboration:

“The field of synthetic diamond science is moving very quickly and is requiring Element Six to develop synthesis processes with impurity control at the level of parts per trillion – real nano-engineering control of CVD diamond synthesis. We have been working closely with Professor Lukin’s team in Harvard for three years - this result published in Science is an example of how successful this collaboration has been.”

Professor Mikhail Lukin of Harvard University’s Department of Physics described the significance of the research findings:

“Element Six’s unique and engineered synthetic diamond material has been at the heart of these important developments. The demonstration of a single qubit quantum memory with seconds of storage time at room temperature is a very exciting development, which combines the four key requirements of initialisation, memory, control and measurement. These findings might one day lead to novel quantum communication and computation technologies, but in the nearer term may enable a range of novel and disruptive quantum sensor technologies, such as those being targeted to image magnetic fields on the nano-scale for use in imaging chemical and biological processes.”

The findings represent the latest developments in quantum information processing, which involves manipulating individual atomic sized impurities in synthetic diamond and exploiting the quantum property spin of an individual electron, which can be thought of classically as a bar magnet having two states: up (1) and down (0). However, in the quantum mechanical description (physics of the very small), this quantum spin (qubit) can be both 0 and 1 simultaneously. It is this property that provides a framework for quantum computing, but also for more immediate applications such as novel magnetic sensing technologies.

About Element Six
Element Six (www.e6.com) is an independently managed synthetic diamond supermaterials company. Element Six is part of the De Beers Family of Companies and is co-owned by Umicore, the Belgian materials group. Element Six is a global leader in the design, development and production of synthetic diamond supermaterials, and operates worldwide with its head office registered in Luxembourg, and primary manufacturing facilities in China, Germany, Ireland, Sweden, South Africa and the UK.

Element Six supermaterial solutions are used in applications such as cutting, grinding, drilling, shearing and polishing, while the extreme properties of synthetic diamond beyond hardness are already opening up new applications in a wide array of industries such as optics, power transmission, water treatment, semi-conductors and sensors.

The quantum information research collaboration

The study was a collaboration between the following organisations:
Element Six, Ascot, UK,
Department of Physics, Harvard University, Cambridge, MA, USA
Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA.
Max-Planck-Institut für Quantenoptik, Garching, Germany.
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Funding for some of this research was provided by the DARPA QuASAR programme. The results of the research appear in an article in Science magazine, published 8 June 2012.

Technical details of the research

Key to the material aspect of achieving this result was producing synthetic diamond with essentially no spin impurities other than a very specific defect called the N-V (nitrogen vacancy) centre (a vacancy next to a nitrogen atom in the diamond lattice). This ‘N-V centre’ has very specific properties in that it can be spin polarised (similar to the magnetic difference of North-South or South-North of a bar magnet at room temperature) using a simple green light source. Subsequently, the state of the N-V centre can be read out again using simple techniques within a period limited by the quantum de-coherence time.

The isotope carbon-12 forms 98.9% of the carbon usually found in synthetic diamond, while carbon-13 forms the remaining 1.1%. Carbon 13 has a nuclear spin, which through random thermally driven interactions can interact with the electronic spin of the N-V impurity. Removing as many of these nuclear spins while still maintaining the general high purity of the material was a milestone result for the Element Six CVD R&D team.

Specific to Harvard’s breakthrough was to use a carbon-13 nuclear spin (that was still present) to couple with the N-V electronic spin. While the electron spin has a good de-coherence time, it still fluctuates on the millisecond timescale. Once the electron spin changes its spin, the quantum information (qubit) is lost. A single flip in the electronic spin completely destroys the coherence of the carbon-13 nuclear spin. To prevent the electron flips from affecting the nucleus, the Harvard team reset the electron's spin with green laser light, essentially turning off the interaction between the electron and nucleus when that interaction is not needed. This had the result of creating very fast electron flips which do no interact with the nuclear spin – effectively a non-fluctuating average field.

In combination with this method, the Harvard research team used a sequence of radio-frequency pulses to suppress interactions with other carbon nuclei in the synthetic diamond. As a result, they were able to store quantum information at room temperatures for nearly two seconds, which was significantly more than anticipated when the research commenced. Previous experiments in quantum information have generally demonstrated single qubit memory storage times to be in microseconds.

Further information

For further information, please contact Iain Hutchison, Element Six Group Communications and Brand Manager on:

email: iain.hutchison@e6.com, telephone: +44 20 8742 4949,
mobile: +44 7717 838286

Iain Hutchison | EurekAlert!
Further information:
http://www.e6.com

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>