Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Element 112 shall be named "copernicium" / Proposed name honors astronomer Nicolaus Copernicus

14.07.2009
In honor of scientist and astronomer Nicolaus Copernicus (1473-1543), the discovering team around Professor Sigurd Hofmann suggested the name "copernicium" with the element symbol "Cp" for the new element 112, discovered at the GSI Helmholtzzentrum für Schwerionenforschung (Center for Heavy Ion Research) in Darmstadt.

It was Copernicus who discovered that the Earth orbits the Sun, thus paving the way for our modern view of the world.

Thirteen years ago, element 112 was discovered by an international team of scientists at the GSI accelerator facility. A few weeks ago, the International Union of Pure and Applied Chemistry, IUPAC, officially confirmed their discovery. In around six months, IUPAC will officially endorse the new element's name. This period is set to allow the scientific community to discuss the suggested name "copernicium" before the IUPAC naming.

"After IUPAC officially recognized our discovery, we - that is all scientists involved in the discovery - agreed on proposing the name "copernicium" for the new element 112. We would like to honor an outstanding scientist, who changed our view of the world", says Sigurd Hofmann, head of the discovering team.

Copernicus was born 1473 in Torun; he died 1543 in Frombork, Poland. Working in the field of astronomy, he realized that the planets circle the Sun. His discovery refuted the then accepted belief that the Earth was the center of the universe. His finding was pivotal for the discovery of the gravitational force, which is responsible for the motion of the planets. It also led to the conclusion that the stars are incredibly far away and the universe inconceivably large, as the size and position of the stars does not change even though the Earth is moving. Furthermore, the new world view inspired by Copernicus had an impact on the human self-concept in theology and philosophy: humankind could no longer be seen as the center of the world.

With its planets revolving around the Sun on different orbits, the solar system is also a model for other physical systems. The structure of an atom is like a microcosm: its electrons orbit the atomic nucleus like the planets orbit the Sun. Exactly 112 electrons circle the atomic nucleus in an atom of the new element "copernicium".

Element 112 is the heaviest element in the periodic table, 277 times heavier than hydrogen. It is produced by a nuclear fusion, when bombarding zinc ions onto a lead target. As the element already decays after a split second, its existence can only be proved with the help of extremely fast and sensitive analysis methods. Twenty-one scientists from Germany, Finland, Russia and Slovakia have been involved in the experiments that led to the discovery of element 112.

Since 1981, GSI accelerator experiments have yielded the discovery of six chemical elements, which carry the atomic numbers 107 to 112. The discovering teams at GSI already named five of them: element 107 is called bohrium, element 108 hassium, element 109 meitnerium, element 110 darmstadtium, and element 111 is named roentgenium.

Dr. Ingo Peter | idw
Further information:
http://www.gsi.de/portrait/Pressemeldungen/14072009_e.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>