Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where electrons get stuck in traffic

11.08.2011
The thinnest wire in the world, made from pure gold, is being examined by physicists from the universities of Würzburg and Kassel. Its exceptional electrical conductivity is causing quite a stir: the electrons do not move freely through the wire, but like cars in stop-and-go traffic.

Normally, electrons, the carriers of an electrical charge, crisscross through metals or other electrically conductive materials. But this situation changes as the conductors are made smaller and smaller.


In nanowires made from gold atoms, electrons can only move in very narrow lanes, resulting in congestion. This is illustrated here by the red-stained wire. Depicted at the top right is the tip of a scanning tunneling microscope used by physicists to measure the electronic properties of nanowires. Image: Christian Blumenstein


Atomic building block: single gold atoms automatically form nanowires (left), which can then be connected deliberately using bridges or intentionally disrupted – by integrating other types of atom, for example, or by removing single gold atoms from the chains. Image: Christian Blumenstein

Würzburg physicists under Professor Ralph Claessen have taken miniaturization to the extreme: their nanowires consist of single gold atoms arranged in chains – it is not possible to go any smaller than that. In collaboration with Professor René Matzdorf from the University of Kassel and Luc Patthey from the Paul Scherrer Institute near Zurich, they have now examined the electrical properties of these nanowires.

In the nanowires, the electrons are so congested that they can only move in one direction, namely along the wires. And even this bit of freedom cannot be exploited to the full. They only move along in a stop-and-go manner, just like cars in a jam on the freeway with just one lane at their disposal: only when one car in the line of traffic moves forward a bit can the others do likewise. “The movements of the electrons in a nanowire are correlated just like this,” says Matzdorf. “This means they can only absorb selected energies, which is reflected in electrical conductivity and which we have measured precisely in an experiment.”

Publication in “Nature Physics”

This electron jam has now been proven experimentally by Claessen’s team in collaboration with their colleagues from Kassel and the Paul Scherrer Institute. The scientists achieved this using highly sensitive measuring techniques, scanning tunneling microscopy, and photoemission. This enabled them to verify the unusual states of the electrons directly. Their findings have been published in “Nature Physics”.

Why is a leading journal reporting the results of this research? “Because in atom chains we now have previously unknown capabilities for measuring the properties of a one-dimensional quantum liquid,” says Claessen. Physicists speak of a quantum liquid when the electrons are confined in such narrow lanes. Theoreticians predicted the properties of this “liquid” back in the 1960s. But very few of them have actually been observed in experiments as well, until now.

Nanowires as the basis for success

It has taken decades to generate these special electron states experimentally in atomic nanostructures. “This is mainly due to the fact that the nanowires produced previously were too close together and influenced each other, preventing the creation of a quantum liquid,” explains Claessen’s colleague, Jörg Schäfer.

The Würzburg physicists resolved this problem a good two years ago: using a sophisticated procedure, they vapor deposit gold atoms onto germanium plates such that they automatically arrange themselves into parallel linear chains far enough apart from one another.

Next steps in the research

The physicists now want to use the nanowires as an atomic building block. They are thinking, for example, of inserting contacts between the wires consisting of single atoms or molecules, which would equate to tiny atomic switching elements. The intention behind this is to explore other electronic phenomena at this smallest possible scale. Their findings may well prove very valuable to the rapid miniaturization of electronic components for computers, for example.

“Atomically controlled quantum chains hosting a Tomonaga-Luttinger liquid”, C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, R. Claessen, Nature Physics, Advanced Online Publication, August 7, 2011, DOI: 10.1038/nphys2051

Contact

Prof. Dr. Ralph Claessen, Institute of Physics at the University of Würzburg, T +49 (0)931 31-85732, claessen@physik.uni-wuerzburg.de

Dr. Jörg Schäfer, Institute of Physics at the University of Würzburg, T +49 (0)931 31-83483, joerg.schaefer@physik.uni-wuerzburg.de

Prof. Dr. René Matzdorf, Institute of Physics at the University of Kassel, T +49 (0)561 804-4772, matzdorf@physik.uni-kassel.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>