Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where electrons get stuck in traffic

11.08.2011
The thinnest wire in the world, made from pure gold, is being examined by physicists from the universities of Würzburg and Kassel. Its exceptional electrical conductivity is causing quite a stir: the electrons do not move freely through the wire, but like cars in stop-and-go traffic.

Normally, electrons, the carriers of an electrical charge, crisscross through metals or other electrically conductive materials. But this situation changes as the conductors are made smaller and smaller.


In nanowires made from gold atoms, electrons can only move in very narrow lanes, resulting in congestion. This is illustrated here by the red-stained wire. Depicted at the top right is the tip of a scanning tunneling microscope used by physicists to measure the electronic properties of nanowires. Image: Christian Blumenstein


Atomic building block: single gold atoms automatically form nanowires (left), which can then be connected deliberately using bridges or intentionally disrupted – by integrating other types of atom, for example, or by removing single gold atoms from the chains. Image: Christian Blumenstein

Würzburg physicists under Professor Ralph Claessen have taken miniaturization to the extreme: their nanowires consist of single gold atoms arranged in chains – it is not possible to go any smaller than that. In collaboration with Professor René Matzdorf from the University of Kassel and Luc Patthey from the Paul Scherrer Institute near Zurich, they have now examined the electrical properties of these nanowires.

In the nanowires, the electrons are so congested that they can only move in one direction, namely along the wires. And even this bit of freedom cannot be exploited to the full. They only move along in a stop-and-go manner, just like cars in a jam on the freeway with just one lane at their disposal: only when one car in the line of traffic moves forward a bit can the others do likewise. “The movements of the electrons in a nanowire are correlated just like this,” says Matzdorf. “This means they can only absorb selected energies, which is reflected in electrical conductivity and which we have measured precisely in an experiment.”

Publication in “Nature Physics”

This electron jam has now been proven experimentally by Claessen’s team in collaboration with their colleagues from Kassel and the Paul Scherrer Institute. The scientists achieved this using highly sensitive measuring techniques, scanning tunneling microscopy, and photoemission. This enabled them to verify the unusual states of the electrons directly. Their findings have been published in “Nature Physics”.

Why is a leading journal reporting the results of this research? “Because in atom chains we now have previously unknown capabilities for measuring the properties of a one-dimensional quantum liquid,” says Claessen. Physicists speak of a quantum liquid when the electrons are confined in such narrow lanes. Theoreticians predicted the properties of this “liquid” back in the 1960s. But very few of them have actually been observed in experiments as well, until now.

Nanowires as the basis for success

It has taken decades to generate these special electron states experimentally in atomic nanostructures. “This is mainly due to the fact that the nanowires produced previously were too close together and influenced each other, preventing the creation of a quantum liquid,” explains Claessen’s colleague, Jörg Schäfer.

The Würzburg physicists resolved this problem a good two years ago: using a sophisticated procedure, they vapor deposit gold atoms onto germanium plates such that they automatically arrange themselves into parallel linear chains far enough apart from one another.

Next steps in the research

The physicists now want to use the nanowires as an atomic building block. They are thinking, for example, of inserting contacts between the wires consisting of single atoms or molecules, which would equate to tiny atomic switching elements. The intention behind this is to explore other electronic phenomena at this smallest possible scale. Their findings may well prove very valuable to the rapid miniaturization of electronic components for computers, for example.

“Atomically controlled quantum chains hosting a Tomonaga-Luttinger liquid”, C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, R. Claessen, Nature Physics, Advanced Online Publication, August 7, 2011, DOI: 10.1038/nphys2051

Contact

Prof. Dr. Ralph Claessen, Institute of Physics at the University of Würzburg, T +49 (0)931 31-85732, claessen@physik.uni-wuerzburg.de

Dr. Jörg Schäfer, Institute of Physics at the University of Würzburg, T +49 (0)931 31-83483, joerg.schaefer@physik.uni-wuerzburg.de

Prof. Dr. René Matzdorf, Institute of Physics at the University of Kassel, T +49 (0)561 804-4772, matzdorf@physik.uni-kassel.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>