Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where electrons get stuck in traffic

11.08.2011
The thinnest wire in the world, made from pure gold, is being examined by physicists from the universities of Würzburg and Kassel. Its exceptional electrical conductivity is causing quite a stir: the electrons do not move freely through the wire, but like cars in stop-and-go traffic.

Normally, electrons, the carriers of an electrical charge, crisscross through metals or other electrically conductive materials. But this situation changes as the conductors are made smaller and smaller.


In nanowires made from gold atoms, electrons can only move in very narrow lanes, resulting in congestion. This is illustrated here by the red-stained wire. Depicted at the top right is the tip of a scanning tunneling microscope used by physicists to measure the electronic properties of nanowires. Image: Christian Blumenstein


Atomic building block: single gold atoms automatically form nanowires (left), which can then be connected deliberately using bridges or intentionally disrupted – by integrating other types of atom, for example, or by removing single gold atoms from the chains. Image: Christian Blumenstein

Würzburg physicists under Professor Ralph Claessen have taken miniaturization to the extreme: their nanowires consist of single gold atoms arranged in chains – it is not possible to go any smaller than that. In collaboration with Professor René Matzdorf from the University of Kassel and Luc Patthey from the Paul Scherrer Institute near Zurich, they have now examined the electrical properties of these nanowires.

In the nanowires, the electrons are so congested that they can only move in one direction, namely along the wires. And even this bit of freedom cannot be exploited to the full. They only move along in a stop-and-go manner, just like cars in a jam on the freeway with just one lane at their disposal: only when one car in the line of traffic moves forward a bit can the others do likewise. “The movements of the electrons in a nanowire are correlated just like this,” says Matzdorf. “This means they can only absorb selected energies, which is reflected in electrical conductivity and which we have measured precisely in an experiment.”

Publication in “Nature Physics”

This electron jam has now been proven experimentally by Claessen’s team in collaboration with their colleagues from Kassel and the Paul Scherrer Institute. The scientists achieved this using highly sensitive measuring techniques, scanning tunneling microscopy, and photoemission. This enabled them to verify the unusual states of the electrons directly. Their findings have been published in “Nature Physics”.

Why is a leading journal reporting the results of this research? “Because in atom chains we now have previously unknown capabilities for measuring the properties of a one-dimensional quantum liquid,” says Claessen. Physicists speak of a quantum liquid when the electrons are confined in such narrow lanes. Theoreticians predicted the properties of this “liquid” back in the 1960s. But very few of them have actually been observed in experiments as well, until now.

Nanowires as the basis for success

It has taken decades to generate these special electron states experimentally in atomic nanostructures. “This is mainly due to the fact that the nanowires produced previously were too close together and influenced each other, preventing the creation of a quantum liquid,” explains Claessen’s colleague, Jörg Schäfer.

The Würzburg physicists resolved this problem a good two years ago: using a sophisticated procedure, they vapor deposit gold atoms onto germanium plates such that they automatically arrange themselves into parallel linear chains far enough apart from one another.

Next steps in the research

The physicists now want to use the nanowires as an atomic building block. They are thinking, for example, of inserting contacts between the wires consisting of single atoms or molecules, which would equate to tiny atomic switching elements. The intention behind this is to explore other electronic phenomena at this smallest possible scale. Their findings may well prove very valuable to the rapid miniaturization of electronic components for computers, for example.

“Atomically controlled quantum chains hosting a Tomonaga-Luttinger liquid”, C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, R. Claessen, Nature Physics, Advanced Online Publication, August 7, 2011, DOI: 10.1038/nphys2051

Contact

Prof. Dr. Ralph Claessen, Institute of Physics at the University of Würzburg, T +49 (0)931 31-85732, claessen@physik.uni-wuerzburg.de

Dr. Jörg Schäfer, Institute of Physics at the University of Würzburg, T +49 (0)931 31-83483, joerg.schaefer@physik.uni-wuerzburg.de

Prof. Dr. René Matzdorf, Institute of Physics at the University of Kassel, T +49 (0)561 804-4772, matzdorf@physik.uni-kassel.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>