Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrons spiral to a new future

01.04.2010
Electrons that carry orbital angular momentum are generated for the first time by researchers at RIKEN, Japan

A new physical quantity of electrons—orbital angular momentum—has been generated by Masaya Uchida and Akira Tonomura at the RIKEN Advanced Science Institute in Wako, Japan. The work, published today in the international science journal Nature1, could establish novel fields of research and lead to new electron microscopes.

“The ability of optical waves to spiral about their axis as they propagate, which can be described as corkscrew wavefronts, has already found a wide range of applications” explains Uchida.

A wave can be characterized by the shape of its wavefronts: imaginary surfaces that connect all points where the wave is at the same stage in its oscillatory cycle. In a conventional plane wave, these fronts are a series of flat surfaces oriented perpendicular to the direction of propagation.

Some optical wavefronts are shaped like fusilli pasta; the wavefronts rotate around a central axis and therefore have momentum, orbital angular momentum to be specific, which is associated with the wavefront’s shape and pitch.

Since electron waves act like optical waves, Uchida thought that spiraling electron waves were possible.

The researchers had to resolve a daunting technological challenge to generate the electrons with orbital angular momentum. A corkscrew wavefront is imprinted on an electron plane wave when it passes through a three-dimensional (3D) structure shaped into a single twist of the desired spiral. But since the height of the twist—determined by the wavelength of electron wave—is less than 100 nanometers, creating such a spiraling nanostructure is difficult.

The researchers simplified this problem by approximating the spiraling structure to several linear steps like a spiral ‘staircase’. They crushed the graphite from a pencil into thin films and placed them onto a carbon-coated copper grid. These fragments formed stacked layers resembling a spiral staircase.

To prove that the electrons gained orbital angular momentum as they passed through this simple 3D nanostructure, Uchida and Tonomura mixed the output wave with a second plane wave. They observed the characteristic ‘Y’-shaped defect to the parallel-lines pattern that is expected when two plane waves interfere. Measuring the transfer of momentum from the electrons to matter, however, could be a more direct way of identifying spiraling electron waves in the future, the researchers note.

“The next stage of the research is to produce wavefronts with various structure types,” says Uchida. “Just as there are many types of pasta, so there are many shapes of electron wave.”

For more information, please contact:
Dr. Masaya Uchida
Nagoya Institute of Technology
Tel: +81-(0)527-35-5162 ext. 5162
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Mail: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: RIKEN angular momentum electron microscope electron waves electrons

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>