Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics: Magnetic memories on the right track

28.08.2014

An investigation into switching characteristics provides new criteria for achieving faster switching of magnetic memories.

Computer hard drives store data by writing magnetic information onto their surfaces. In the future, magnetic effects may also be used to improve active memory in computers, potentially eliminating the need to ‘boot up’ a computer. One way to achieve this is through a memory technology known as STT-MRAM that utilizes information stored in a pair of thin magnetic layers.


Pathways for the switching of a magnetic layer in an STT-MRAM device depend on the relative alignment of the two layers in the device.

Copyright : 2014 A*STAR Institute of High Performance Computing

By performing calculations, Chee Kwan Gan and colleagues from the A*STAR Institute of High Performance Computing have proposed ways to improve STT-MRAM memory through identifying design options for achieving faster switching speeds, and hence faster data write times [1].

In STT-MRAM devices, the relative orientation of the magnetic fields in the two thin layers determines the electrical resistance experienced by a current flowing through the device. If the magnetizations of both layers are aligned in the same direction, then the electrical resistance will be lower than when the layers have different magnetic alignments.

Switching the device between different magnetic states — which corresponds to writing information into the memory — is achieved by electrons whose magnetic property, the spin, is aligned in one direction. Collectively, these electrons are able to change the direction of the magnetization in one of the layers. The time it takes to switch the magnetic direction depends on several factors, including the initial relative orientation of the magnetic fields in the two layers. The magnetization of the switched layer can follow various complex paths during the switching process (see image).

In previous experiments, the switching process was found to depend on two parameters. Using their computational model, the researchers could focus on one parameter — the less-studied ‘field-like’ term — that accounts for the relative orientation of the magnetic fields in both layers. The strength of this term depends on various factors, such as the device geometry and the materials used.

The calculations by the researchers show that, for devices with a strong field-like term, there is greater potential to reduce switching times than for devices in which the field-like term is negligible. Gan explains that this discovery will assist the development of improved STT-MRAM devices. “Our findings will motivate experimentalists to fabricate devices with strong field-like terms,” says Gan.

Furthermore, a better understanding of the origin of the field-like term is needed, adds Gan. “Although the effect of the field-like term has been confirmed experimentally and investigated in this work through simulations, it is important to understand its physical origins in order to improve material design.”

Reference

1. Tiwari, R. K., Jhon, M. H., Ng, N., Srolovitz, D. J. & Gan, C. K. Current-induced switching of magnetic tunnel junctions: Effects of field-like spin-transfer torque, pinned-layer magnetization orientation, and temperature. Applied Physics Letters 104, 022413 (2014).

Lee Swee Heng | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7024
http://www.researchsea.com

Further reports about: A*STAR Electronics Magnetic Science electrons factors layers magnetization materials memories orientation resistance

More articles from Physics and Astronomy:

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>