Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electronic charge distribution on the atomic scale


Physicists tackle long-standing question using novel experimental approach

Scientists from the University of Göttingen and the Jülich Research Centre have made an important step towards a deeper understanding of metal-semiconductor interfaces. By means of a novel experimental approach the researchers investigated the distribution of the electronic charge at these interfaces on the atomic scale. Their results were published in the journal Physical Review Letters and highlighted as “Editors’ suggestion”.

Novel experiment on metal-semiconductor interfaces: A very sharp metal tip (red) is scanned across the iron/gallium arsenide interface

Universität Göttingen

In every electronic semiconductor device the interfaces between two different materials play a crucial role. In this context, the atomic and electronic structure of metal-semiconductor interfaces is of fundamental im-portance.

For the development and the design of novel nanometer-sized devices, a basic understanding of these interfaces is of central interest. However, up until now, no commonly accepted model that describes metal-semiconductor interfaces in their entirety existed. This is also due to the fact that scientists did not have an adequate experimental approach to investigate the atomic structure of these interfaces.

Now scientists in Göttingen and Jülich investigated the technologically interesting iron/gallium arsenide inter-face using a scanning tunneling microscope developed in Göttingen. “By scanning a very sharp metal tip across the interface we were able to simultaneously map its structure and its electronic properties on the atomic scale,” explains doctoral candidate Tim Iffländer from Göttingen University’s IV. Physical Institute.

“In combination with theoretical calculations from the colleagues in Jülich we found out that the electronic barrier between metal and semiconductor, on the one hand, is dominated by charges from the metal tailing into the semiconductor and, on the other hand, essentially depends on the chemical bonds between metal and semiconductor as well.”

“The high level of agreement between measured and calculated charge distribution at the interface demon-strates that our experimental approach is particularly well-suited to study the electronic properties of metal-semiconductor interfaces on the atomic scale,” adds Dr. Martin Wenderoth, head of the research group. “This allows us to check the relevance of several theoretical models.

Moreover, our experiment serves as starting point for further studies addressing the influence of defects and the detailed atomic structure at the interface on the electronic properties of metal-semiconductor contacts.”

Original publication: T. Iffländer et al. Local Density of States at Metal-Semiconductor Interfaces: An Atomic Scale Study. Phys. Rev. Lett. 114, 146804 (2015). Doi: 10.1103/PhysRevLett.114.146804 .

Dr. Martin Wenderoth
University of Göttingen
Faculty of Physics – IV. Physical Institute
Friedrich-Hund-Platz 1, 37077 Göttingen
Phone +49 551 39-9367 or -4536

Romas Bielke | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>