Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electron Spins Separated on a Semiconductor Surface

New findings on the spin of electrons in semiconductor materials
In a recent publication, physicists of the University of Würzburg describe the spin architecture of an ultra-thin metal layer on a semiconductor for the first time. This represents yet another step towards high-performing super computers.

Würzburg physicists have determined the spin architecture of a semiconductor surface. For this purpose, electrons were displaced from the material by means of photo-excitation so that their spin orientation could be measured.
Graphics: Philipp Höpfner

The development of significantly faster computers might be feasible if the spin of electrons could be used as information carrier in data processing.

What is this electron spin? The spin gives the electron magnetic properties in addition to its electric charge. "You can imagine each electron as carrying a tiny elementary magnet, just like a compass needle," explains the Würzburg physicist, Jörg Schäfer.

In order to use the electron spin in electronics, thus implementing spintronics, it would be required to arrange the electrons flowing in a semiconductor chip by their spin state, i.e. to align their spin orientation. These elementary magnetic needles would have to keep this spin formation when traveling through the electronic device as so-called spin currents.

Trick allows spin separation without magnetic fields

It has been known for a long time that the spins can be manipulated by magnetic fields. However, this is not at all practicable for electronic applications. Therefore, the solid-state physicists devised an ingenious trick: An ultra-thin metal layer with a thickness of only one atom is vapor-deposited on a semi-conducting solid material. In this system, the electrons spontaneously sort themselves into two groups with opposite magnet needle orientation.

This effect is the more pronounced, the heavier the respective metal atoms are. "We wanted to produce and further examine this automatic spin separation in a model experiment," explains Professor Ralph Claessen. The Würzburg physicists decided to use gold as a particularly heavy metal, which they vapor-deposited in a wafer-thin layer on a semiconductor substrate consisting of Germanium.

Close interaction between theory and experiment

The experimental findings on the spin pattern correspond very accurately to the predictions developed by the Würzburg theoretical physicists working with Professor Werner Hanke. "We can create a mathematical model of the spin structure in the semiconductor, enabling us to make very accurate practical predictions with state-of-the-art computers," Hanke explains.

The spin pattern can be experimentally verified by means of photoemission spectroscopy. The relevant measurements were conducted at the Paul Scherrer Institute in Switzerland. In these measurements, the semiconductor surface with the gold layer is subjected to the particularly intensive X-ray radiation of a synchrotron. This causes electrons to get loose and fly out of the sample at various angles – depending on their spin – which can be spotted by detectors.

Two spin orientations clearly identified for the first time

"We observed a marked splitting of the spins into two groups with opposite orientation of the magnet needles and a special spin pattern," says Jörg Schäfer. Thus, all spins point out of the surface or into it. "The merit of this collaboration in the fields of theoretical and experimental physics lies in the fact that the three-dimensional spin pattern has been clarified for the first time," says Ralph Claessen. In particular, the results clearly show that the separation of the conduction electrons by their spin works well. Thus, they can be sent separately on their journey through the metal. This is new and important fundamental knowledge for spintronics.

The editor of the scientific journal "Physical Review Letters" was outright enthusiastic about these findings: The successful research from Würzburg is specially recommended for perusal to the knowledgeable readers of the journal as "Editor's Suggestion".

Study conducted within a DFG research group

The publication arose from Würzburg research group 1162, which has been funded by the German Research Foundation (DFG) with about three million euros since 2009. The group examines electronic quantum effects in nanostructures; Ralph Claessen is its spokesperson.

"Three-Dimensional Spin Rotations at the Fermi Surface of a Strongly Spin-Orbit Coupled Surface System", P. Höpfner, J. Schäfer, A. Fleszar, J. H. Dil, B. Slomski, F. Meier, C. Loho, C. Blumenstein, L. Patthey, W. Hanke, and R. Claessen, Physical Review Letters 108, 186801 (2012), DOI 10.1103/PhysRevLett.108.186801

Contact person

Prof. Dr. Ralph Claessen, Institute of Physics of the University of Würzburg, T +49 (0)931 31-85732,

Robert Emmerich | idw
Further information:

Further reports about: DFG Electron Semiconductor Spin Surface electron spin magnetic field

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>