Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electron "Pairing": Triplet superconductivity proven experientially for first time

01.12.2010
Tracking down Cooper pairs: RUB researchers confirm theoretical hypothesis

Researchers at Ruhr-Universität Bochum (RUB), Christian-Albrechts-Universität zu Kiel (CAU) and Santa Barbara (USA) have made the first experimental breakthrough in quantum physics: Their studies on the "pairing behavior" of electrons have proven for the first time the existence of electron pairs, so-called Cooper pairs, with parallel spin direction. Cooper pairs cause superconductivity – this is a particular state of material, in which the electrical resistance disappears. Until now the existence of triplet Cooper pairs has only been predicted theoretically.

The results achieved by this research team headed by Prof. Kurt Westerholt and Prof. Hartmut Zabel (Department of Physics and Astronomy at RUB) could contribute to new, power saving components in the future. The researchers reported on their findings in the American Physical Society's noted journal "The Physical Review“.

Electron pairs in singlet state

If it were possible to eliminate electrical resistance we could reduce our electric bill significantly and make a significant contribution to solving the energy problem, if it were not for a few other problems. Many metals as well as oxides demonstrate a superconductive state, however only at low temperatures. The superconductive effect results from Cooper pairs that migrate through the metal together "without resistance". The electrons in each Cooper pair are arranged so that their composite angular momentum is zero. Each electron has an angular momentum, the so-called spin, with a value of 1/2. When one electron spins counterclockwise (-1/2) and the other clockwise (+1/2), the total of the two spin values is zero. This effect, found only in superconductors, is called the singlet state.

Superconductive Cooper pairs

If a superconductor is brought into contact with a ferromagnetic material, the Cooper pairs are broken up along the shortest path and the superconductor becomes a normal conductor. Cooper pairs cannot continue to exist in a singlet state in a ferromagnetic material. Researches at RUB (Prof. Konstantin Efetov, Solid State Physics) among others have, however, theoretically predicted a new type of Cooper pair, which has a better chance of survival in ferromagnetic materials. In such Cooper pairs the electrons spin in parallel with one another so that they have a finite spin with a value of 1. Since this angular momentum can have three orientations in space, it is also known as the triplet state. "Obviously there can also be only one certain, small fraction of Cooper pairs in a triplet state, which then quickly revert to the singlet state" explained Prof. Kurt Westerholt. "The challenge was to verify these triplet Cooper pairs experimentally“.

Tunnel current from Cooper pairs

Superconductors allow us to produce highly sensitive detectors for magnetic fields, which even allow detection of magnetic fields resulting from brain waves. These detectors are called SQUID's (superconducting quantum interference devices) – components which use the superconductive quantum properties. The central feature in these components consists of so-called tunnel barriers with a series of layers made up of a superconductor, insulator and another superconductor. Quantum mechanics allows a Cooper pair to be "tunneled" through a very thin insulating layer. Tunneling of a large number of Cooper pairs results in a tunnel current. "Naturally the barrier cannot be too thick, otherwise the tunnel current subsides. A thickness of one to two nanometers is ideal“, according to Prof. Hermann Kohlstedt (CAU).

Double success in Bochum und Kiel

If part of the tunnel barrier is replaced by a ferromagnetic layer, the Cooper pairs are broken up while they are still in the barrier and do not reach the superconductor on the other side. The tunnel current decreases drastically. "Triplet Cooper pairs can, however, be tunneled much better through such a ferromagnetic barrier", says Dirk Sprungmann, who was involved as Ph.D. student. If we are successful in converting a portion of the singlet Cooper pairs to triplet Cooper pairs, the tunnel current should be significantly stronger and be able to pass through a thicker ferromagnetic layer. This is precisely what the physicists in Bochum and Kiel tested. They allowed the Cooper pairs to pass through ferromagnetic barriers with thicknesses of up to 10 nanometers. With this attempt the physicists achieved a double success. On the one hand they were able to experimentally verify the existence of triplet Cooper pairs, and, on the other, they demonstrated that the tunnel current is greater than for singlet Cooper pairs in conventional tunnel contacts. "These new ferromagnetic tunnel barriers may possibly be used for new types of components", states Dr. Martin Weides (Santa Barbara). With their research findings the scientists confirmed, among other things, the theoretical work of a Norwegian research team published only a few weeks before.

Title picture

D. Sprungmann, K. Westerholt, H. Zabel, M. Weides, H. Kohlstedt: Evidence of triplet superconductivity in Josephson junctions with barriers of the ferromagnetic Heusler alloy Cu2MnAl. Physical Review B 82 (2010), DOI: 10.1103/PhysRevB.82.060505

Further information

Prof. Hartmut Zabel, Prof. Kurt Westerholt, Experimental Physics IV – Solid State Physics, Department of Physics and Astronomy at RUB, Tel. +49 (0)234/32-23650, -23621, Email: hartmut.zabel@rub.de. Kurt.westerholt@rub.de

Prof. Dr. Hermann Kohlstedt, Nanoelektronik, Technische Fakultät Kiel, Christian-Albrechts-Universität Kiel, hko@tf.uni-kiel.de, +49 (0)431/880-6075

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>