Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electron politics: Physicists probe organization at the quantum level

26.04.2012
Physicists show standard ‘quasiparticle’ theory breaks down at ‘quantum critical point’
A new study this week finds that “quantum critical points” in exotic electronic materials can act much like polarizing “hot button issues” in an election. Reporting in Nature, researchers from Rice University, two Max Planck Institutes in Dresden, Germany, and UCLA find that on either side of a quantum critical point, electrons fall into line and behave as traditionally expected, but at the critical point itself, traditional physical laws break down.

“The beauty of the quantum critical point is that even though it’s only one point along the zero temperature axis, what happens at that point dictates how electrons will interact in the material under a broad set of physical conditions,” said study co-author Qimiao Si, a theoretical physicist at Rice University. The new study involved “heavy-fermion metals,” magnetic materials with many similarities to high-temperature superconductors.

Flowing electrons power all the lights, computers and gadgets that are plugged into the world’s energy grids, and physicists have spent more than a century describing how these electrons behave. But long-standing theories that describe how electrons interact in traditional metals and semiconductors have yet to explain the strange electronic properties of heavy-fermion metals, man-made composites that contain precise atomic arrangements of transition metals and rare earth elements.

In the new study, Si collaborated with a group of experimental physicists led by Frank Steglich at the Max Planck Institute for Chemical Physics of Solids. The researchers examined several physical properties at extremely cold temperatures — some as much as 10 times colder than any such previous measurements — to show exactly how the standard theory of electron correlations in metals breaks down at the quantum critical point (QCP). That theory, Landau’s Fermi liquid theory, was first introduced in 1956.

“By measuring the ratio of the thermal to electrical transport near the QCP in one of the most-studied heavy-fermion metals — ytterbium dirhodium disilicide — we found a breakdown in the fundamental concepts of Landau-Fermi liquid theory,” said Steglich, the founding director of the Max Planck Institute for Chemical Physics of Solids.

Quantum particles come in two main varieties — bosons and fermions. Bosons are the quantum equivalent of extroverts; they enjoy one another’s company and can occupy the same quantum space. Fermions are the opposite; no two can occupy the same quantum space, and this defines much of their behavior.

Electrons are fermions, and their tendency to seek quantum elbow room affects the way they organize. It’s important for scientists to understand how they behave in concert because even a small electric current in a tiny wire involves billions upon billions of individual electrons.

Landau-Fermi liquid theory is a mathematical system that allows physicists to describe the actions of many billions of electrons with just a handful of variables. Landau’s vehicle for collapsing the actions of so many particles is something he dubbed a “quasiparticle,” a placeholder that acts like an individual but describes the collective fate of many physical particles.

“One of the tenets of the Landau theory is that this quasiparticle carries the same amount of quantum units of charge and spin as an electron in isolation,” said Si, Rice’s Harry C. and Olga K. Wiess Professor of Physics and Astronomy. “It is not an actual electron, but it behaves like an electron and has the physical status of an electron.”

To show how Landau’s theory breaks down, the new study demonstrated that quasiparticles near a QCP behaved in a way that electrons could not. Electrons have the ability to convey energy as either heat or electricity. Setting up either a temperature or voltage difference in the material provides the means to measure the thermal or electrical conductivity, and the experimental team measured the ratio of the two conductivities at the QCP and found that the quasiparticles there were carrying about 10 percent less thermal conduction than expected.

From the data, Si and fellow theorists Elihu Abrahams and Stefan Kirchner were able to show that the violation in the accepted ratio between heat and electrical conduction occurred only at the QCP; electrons on either side behaved normally.

“This is important because it shows that the breakdown of traditional electron organization occurs at the QCP,” said Kirchner, a theorist from the Max Planck Institute for the Physics of Complex Systems and former postdoctoral fellow at Rice.

The QCP is the point at which the material passes from one phase to another, like ice melting into water, except that the QCP marks a difference between quantum phases.

Abrahams, professor of physics at the University of California, Los Angeles, said, “The finding is unambiguous; new physics is occurring, and the QCP is the culprit.”

The finding adds to the growing body of experimental evidence in support of a theory Si and colleagues offered in 2001 to explain the correlated electron behavior at the QCP.

“At the QCP, magnetism drives quantum fluctuations,” Si said. “Our theory accounts for these in a way that traditional theories like Landau-Fermi liquid theory cannot.”

Si said these quantum fluctuations at the QCP drive the strange electronic behavior that has often been measured in heavy fermion metals, and they may also play a key role in other exotic materials like high-temperature superconductors.

Research co-authors include Heike Pfau, Stephanie Hartmann, Ulrike Stockert, Peijie Sun, Stefan Lausberg, Manuel Brando, Sven Friedemann, Cornelius Krellner, Christoph Geibel and Steffen Wirth, all of the Max Planck Institute for Chemical Physics of Solids.

The research was facilitated by the International Collaborative Center on Quantum Matter, a research collaborative Rice University formed with partner institutions from China, Germany and the United Kingdom. The research was supported by the German Research Foundation, the National Science Foundation, the Robert A. Welch Foundation and the Aspen Center for Physics.

The Nature paper is available at:
http://www.nature.com/nature/journal/v484/n7395/full/nature11072.html

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>