Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electron self-injection into an evolving plasma bubble

03.11.2009
Particle accelerators are among the largest and most expensive scientific instruments.

Thirty years ago, theorists John Dawson and Toshiki Tajima proposed an idea for making them thousands of times smaller: surf the particles on plasma waves driven by short intense laser pulses. Since plasmas are free of the damage limits of conventional accelerators, much larger fields can be built up within such waves, enabling much smaller accelerators.

Just five years ago, experimentalists finally demonstrated that such laser-plasma accelerators could produce monoenergetic, collimated electron beams with quality comparable to conventional accelerators. The secret was for the laser to produce a "bubble" almost completely devoid of electrons in its immediate wake that captured electrons from the surrounding plasma and accelerated them in an exceptionally uniform way. Yet the precise mechanism by which the bubble captured these electrons and accelerated them with such uniformity has remained one of the outstanding mysteries of this field.

Now new theoretical work by scientists from the University of Texas and Commissariat à l'Énergie Atomique (CEA, France), to be reported at the 2009 APS Division of Plasma Physics Annual Meeting, has shed light on this mystery. Formation of the exceptional quality electron beam is attributed to the evolution of the bubble shape which, in turn, is directly associated with the nonlinear evolution of the driving laser pulse (nonlinear focusing and defocusing).

The basic premise of this work is that the size of the bubble—the cavity of electron density traveling over the positive ion background with nearly the speed of light—is determined by the spot size of the driving laser pulse. Plasma nonlinearities cause the laser to focus and defocus in the course of propagation. Once the laser diffracts, the bubble expands. Electrons that constitute a dense electron shell surrounding the bubble move with relativistic speeds and thus have high inertia. As a consequence, some of them become too heavy to follow the expanding shell; they fall inside the bubble, stay inside till the end of the plasma (i.e. get trapped) and finally gain multi-GeV energy. The trapped charge is proportional to the bubble growth rate. Once the laser becomes self-guided, and the spot size oscillations saturate, the injection process clamps. Simultaneously, longitudinal non-uniformity of the accelerating gradient equalizes the trapped electron energy. This scenario of self-injection and monoenergetic bunch formation is discovered and explored in fine detail in the 3-D particle-in-cell simulations. This is fundamentally different from the previous work which concentrated on either one-dimensional models of electron trapping or on the reduced description of transverse plasma wave breaking in planar 2-D geometry.

The discussed mechanism of electron self-injection is very robust in experiments with the high-power laser (tens of terawatts to petawatt). In addition, an appropriate modification of the plasma density (e.g. using a thin dense slab as a nonlinear lens for the laser) may cause the laser to self-focus and defocus faster, which results in a single self-injection event. This kind of laser beam manipulation may lead to the generation of a 2.5 GeV mono-energetic (~1% energy spread) electron bunch containing ~1010 electrons in a future experiment with the recently commissioned Texas Petawatt (TPW) laser – the most powerful laser in the world. Electrons with 2.5 GeV of energy are traveling at 99.999998% of the speed of light. Electron beams with such unique properties are clearly beneficial for medical applications, radiation physics, material science, and homeland security (see, e.g., talks TO4.00004 and TO4.00005, this Meeting).

Saralyn Stewart | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>