Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrified Diamonds: Basel Physicists on the Trail of Quantum Information

19.11.2013
With the help of tiny diamond crystals, physicists at the University of Basel have discovered new possibilities of quantum information:

The scientists discovered at specific circumstances electric currents that made it possible to identify defects in the carbon lattice of single diamonds measuring only a few nanometers. The results have been published online in the magazine «Nano-Letters».


Scanning tunneling microscopy image showing the surface structure of nanodiamonds.

The team from the University of Basel and the French German Research Institute St. Louis (ISL) investigated diamond crystals of the size of only five nanometers (five millionths millimeter) using scanning tunneling microscopy and atomic force microscopy. The physicists then identified the atomic structure of the surface and observed crystalline, hexagonal carbon facets as well as graphitic reconstructions. In doing so, they discovered extra currents at specific voltages when the crystals were illuminated by green light.

These extra currents are related to the presence of defects in the carbon lattice of diamonds, so called Nitrogen-vacancy centers (NV-centers) that are optically active. These centers are promising candidates for future applications in quantum information processing systems, spin-magnetometry sensors or single photon sources. Their identification in the range of less than ten nanometers would have been very difficult with conventional methods, which is why the scientists applied a combination of different methods.

«With this study, we are able to show that it is possible to prove, with high resolution, the presence of optical centers in single nanodiamonds», says Prof. Ernst Meyer of the Department of Physics at the University of Basel. In the future, NV-centers could be used in quantum computers that work much more efficiently than conventional computers.

Original Source
Rémy Pawlak, Thilo Glatzel, Vincent Pichot, Loïc Schmidlin, Shigeki Kawai, Sweetlana Fremy, Denis Spitzer and Ernst Meyer
Local Detection of Nitrogen-Vacancy Centers in a Nanodiamond Monolayer
Nano Lett. 2013 Oct 24, Epub ahead of print | DOI: 10.1021/nl402243s (2013)
Further Information
Prof. Dr. Ernst Meyer, Departement für Physik der Universität Basel, Tel. +41 61 267 37 24. E- Mail: ernst.meyer@unibas.ch
Weitere Informationen:
http://www.ncbi.nlm.nih.gov/pubmed/24144018 - Abstract

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>