Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric Sparks May Alter Evolution of Lunar Soil

22.08.2014

The moon appears to be a tranquil place, but modeling done by University of New Hampshire (UNH) and NASA scientists suggests that, over the eons, periodic storms of solar energetic particles may have significantly altered the properties of the soil in the moon's coldest craters through the process of sparking—a finding that could change our understanding of the evolution of planetary surfaces in the solar system.

The study, published August 8 in the Journal of Geophysical Research-Planets, proposes that high-energy particles from uncommon, large solar storms penetrate the moon's frigid, polar regions and electrically charge the soil.


This illustration shows a permanently shadowed region of the moon undergoing subsurface sparking (the "lightning bolts"), which ejects vaporized material (the "clouds") from the surface. Subsurface sparking occurs at a depth of about one millimeter. Image not to scale.

Image Credit: Andrew Jordan/UNH

The charging may create sparking, or electrostatic breakdown, and this "breakdown weathering" process has possibly changed the very nature of the moon's polar soil, suggesting that permanently shadowed regions, which hold clues to our solar system's past, may be more active than previously thought. 

"Decoding the history recorded within these cold, dark craters requires understanding what processes affect their soil," said Andrew Jordan of the UNH Institute for the Study of Earth, Oceans, and Space and lead author of the paper.

... more about:
»Earth »Electric »Evolution »Exploration »Flight »LRO »NASA »Soil »Space »Sparks »lunar »storms

"To that end, we built a computer model to estimate how high-energy particles detected by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on board NASA's Lunar Reconnaissance Orbiter (LRO) can create significant electric fields in the top layer of lunar soil." 

The scientists also used data from the Electron, Proton, and Alpha Monitor (EPAM) on the Advanced Composition Explorer. CRaTER, which is led by scientists from UNH, and EPAM both detect high-energy particles, including solar energetic particles (SEPs). SEPs, after being created by solar storms, stream through space and bombard the moon.

These particles can buildup electric charges faster than the soil can dissipate them and may cause sparking, particularly in the polar cold of permanently shadowed regions—unique lunar sites as cold as minus 240 degrees Celsius (minus 400 degrees Fahrenheit) that may contain water ice. 

"Sparking is a process in which electrons, released from the soil grains by strong electric fields, race through the material so quickly that they vaporize little channels," said Jordan. Repeated sparking with each large solar storm could gradually grow these channels large enough to fragment the grains, disintegrating the soil into smaller particles of distinct minerals, Jordan and colleagues hypothesize. 

The next phase of this research will involve investigating whether other instruments aboard LRO could detect evidence for sparking in lunar soil, as well as improving the model to better understand the process and its consequences. 

"If breakdown weathering occurs on the moon, then it has important implications for our understanding of the evolution of planetary surfaces in the solar system, especially in extremely cold regions that are exposed to harsh radiation from space," said coauthor Timothy Stubbs of NASA's Goddard Space Flight Center in Greenbelt, Maryland. 

Coauthors from the UNH CRaTER team include Jody Wilson, Nathan Schwadron, Harlan Spence and Colin Joyce. 

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea and space-grant university, UNH is the state's flagship public institution, enrolling 12,300 undergraduate and 2,200 graduate students. 

NASA's Goddard Space Flight Center developed and manages the LRO mission. LRO's current science mission is implemented for NASA’s Science Mission Directorate. NASA's Exploration Systems Mission Directorate sponsored LRO's initial one-year exploration mission that concluded in September 2010. The research was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in Moffett Field, California. It was also funded by the DREAM2 SSERVI science team (Dynamic Response of the Environments at Asteroids, the Moon, and the moons of Mars). 

For more information about LRO, visit: http://www.nasa.gov/lro 

For more information about SSERVI, visit: http://sservi.nasa.gov

Story writer and UNH contact: David Sims

Institute for the Study of Earth, Oceans, and Space, University of New Hampshire

(603) 862-5369

david.sims@unh.edu

NASA contact: Bill Steigerwald

Goddard Space Flight Center, Greenbelt, Md.

301-286-5017

William.a.steigerwald@nasa.gov

Bill Steigerwald | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/electric-sparks-may-alter-evolution-of-lunar-soil/#.U_ZMrPldWSp

Further reports about: Earth Electric Evolution Exploration Flight LRO NASA Soil Space Sparks lunar storms

More articles from Physics and Astronomy:

nachricht Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser
05.02.2016 | Tohoku University

nachricht Scientists create new state of matter: Quantum gas, liquid and crystal all-in-one
02.02.2016 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Laser instead of Reading Glasses?

09.02.2016 | Life Sciences

Wbp2 is a novel deafness gene

09.02.2016 | Life Sciences

Ocean acidification makes coralline algae less robust

08.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>