Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electric focusing and steering of THz beams

In a close collaboration, researchers from the University of Marburg/Germany and of the University of Tokyo/Japan have demonstrated a device which allows for an electric and flexible focusing and steering of terahertz (THz) waves.

The ability to redirect and focus THz beams will be of particular importance for THz communication systems, which will work with directed links between emitters and receivers.

Yet, the position of THz emitters and/or receivers or the distance between them are likely to change from time to time, as we move with a laptop or other mobile devices freely in a room. Moreover, walking persons or moving objects might block the link. Hence, it is crucial to have the ability to redirect THz beams or to vary their divergence. Other application fields include remote sensing and the inspection of industrial goods.

The device was developed by Yasuaki Monnai in the group of Prof. Hiroyuki Shinoda at the University of Tokyo. It is based on a sub-wavelength array of metal cantilevers which can be micro-mechanically actuated by electrostatic forces such that tunable gratings of different periodicity can be created. Tuning the grating pattern allows for a shaping of the wavefront of the diffracted radiation and, hence, to vary the direction of the THz beams. Furthermore, the divergence of the THz beam can be controlled.

The characterization experiments have been performed by Kristian Altmann and Yasuaki Monnai in the group of Prof. Martin Koch at the University of Marburg. In the first proof of concept, the steerable range at 0.3 THz exceeded an angle of 40 degrees. The accomplished beam directions and the field profiles agree well with theoretical expectations.

Original publication: Y. Monnai et al., Optics Express, Vol. 21, Issue 2, pp. 2347-2354 (2013),

For more information contact:
Professor Dr. Martin Koch,
Department of Experimental Semiconductor Physics,
Tel: +49 6421 28 - 22119

Johannes Scholten | idw
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>