Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was Einstein right? Scientists to image event horizon of black hole

17.12.2013
The European Research Council (ERC) has awarded 14 Million Euros to a team of European astrophysicists to construct the first accurate image of a black hole.

The team will test the predictions of current theories of gravity, including Einstein's theory of General Relativity, The funding is provided in the form of a Synergy Grant, the largest and most competitive type of grant of the ERC.


General relativistic ray tracing simulations of the shadow of the event horizon of a black hole.
M. Moscibrodzka & H. Falcke, Radboud University Nijmegen.

The team led by three principal investigators, Heino Falcke, Radboud University Nijmegen, Michael Kramer, Max-Planck-Institut für Radioastronomie, and Luciano Rezzolla, Goethe University in Frankfurt, hopes to measure the shadow cast by the event horizon of the black hole in the center of the Milky Way, find new radiopulsars near this black hole, and combine these measurements with advanced computer simulations of the behaviour of light and matter around black holes as predicted by theories of gravity.

They will combine several telescopes around the globe to peer into the heart of our own Galaxy, which hosts a mysterious radio source, called Sagittarius A* and which is considered to be the central supermassive black hole.

Synergy grants are awarded by the ERC, on the basis of scientific excellence in an intricate and highly competitive selection procedure. The grants have a maximum limit of 15 Million Euros and require the collaboration of 2-4 principal investigators. In the current selection round the ERC honoured 13 out of 449 funding proposal, which corresponds to a success rate of less than 3%. Proposals were submitted from all areas of European science. This is the first time an astrophysics proposal has been awarded.

The project in depth
BlackHoleCam: Imaging the Event Horizon of Black Holes
Black holes
Black holes are notoriously elusive with a gravitational field so large that even light cannot escape their grip. The team plans to make an image of the event horizon – the border around a black hole which light can enter, but not leave.

“While most astrophysicists believe black holes exists, nobody has actually ever seen one”, says Heino Falcke, Professor in radio astronomy at Radboud University in Nijmegen and ASTRON, The Netherlands. “The technology is now advanced enough that we can actually image black holes and check if they truly exist as predicted: If there is no event horizon, there are no black holes”.

Measure the tiniest shadow

So, if black holes are black and are hard to catch on camera, where should one look? The scientists want to peer into the heart of our own Galaxy, which hosts a mysterious radio source, called Sagittarius A*. The object is known to have a mass of around 4 million times the mass of the Sun and is considered to be the central supermassive black hole of the Milky Way.

As gaseous matter is attracted towards the event horizon by the black hole’s gravitational attraction, strong radio emission is produced before the gas disappears. The event horizon should then cast a dark shadow on that bright emission. Given the huge distance to the centre of the Milky Way, the shadow is equivalent to the size of an apple on the moon seen from the earth.

However, by combining high-frequency radio telescopes around the world, in a technique called very long baseline interferometry, or VLBI, even such a tiny feature is in principle detectable. Falcke first proposed this experiment 15 years ago and now an international effort is forming to build a global “Event Horizon Telescope” to realize it. Falcke is convinced: “With this grant from the ERC and the excellent expertise in Europe, we will be able to make it happen together with our international partners”.

Find more radio pulsars

In addition, the group wants to use the same radio telescopes to find and measure pulsars around the very same black hole. Pulsars are rapidly spinning neutron stars, which can be used as highly accurate natural clocks in space. “A pulsar around a black hole would be extremely valuable”, explains Michael Kramer, managing director of the Max-Planck-Institut für Radioastronomie in Bonn. “They allow us to determine the deformation of space and time caused by black holes and measure their properties with unprecedented precision”. However, while radio pulsars are ubiquitous in our Milky Way, surprisingly none had been found in the centre of the Milky Way for decades. Only recently Kramer and his team found the very first radio pulsar around Sagittarius A*. “We suspect there are many more radio pulsars, and if they are there we will find them”, says Kramer.

Behaviour of light and matter

But how will scientists be really sure that there is a black hole in our Milky Way and not something else that behaves in a very similar way? To answer this question, the scientists will combine the information from the black hole shadow and from the motion of pulsars and stars around Sagittarius A* with detailed computer simulations of the behaviour of light and matter around black holes as predicted by theory.

“We have made enormous progress in computational astrophysics in recent years”, states Luciano Rezzolla, Professor of theoretical astrophysics at the Goethe University in Frankfurt and head of the gravitational-wave modelling group at the Max-Planck-Institut für Gravitationsphysik. “We can now calculate very precisely how space and time are warped by the immense gravitational fields of a black hole, and determine how light and matter propagate around black holes”, he remarks. “Einstein’s theory of General Relativity is the best theory of gravity we know, but it is not the only one. We will use these observations to find out if black holes, one of the most cherished astrophysical objects, exist or not. Finally, we have the opportunity to test gravity in a regime that until recently belonged to the realm of science fiction; it will be a turning point in modern science”, says Rezzolla.

Partners in Europe

The principal investigators will closely collaborate with a number of groups throughout Europe. Team members in the ERC grant are:

Robert Laing from the European Southern Observatory (ESO) in Garching, European project scientist of ALMA, a new high-frequency radio telescope, that the team seeks to use for their purpose,
Frank Eisenhauer from the Max-Planck-Institut für extraterrestrische Physik in Garching, principal investigator of the upcoming GRAVITY instrument for the ESO Very Large Telescope Interferometer, to precisely measure the motion of stars and infrared flares around the Galactic Center black hole.

Huib van Langevelde, director of the Joint Institute for VLBI in Europe (JIVE) and Professor of Galactic radio astronomy at the University of Leiden.

The efforts of the Max-Planck-Institut für Radioastronomie will be conducted jointly with the VLBI group and the high-frequency radio astronomy groups at the institute and their directors Anton Zensus and Karl Menten.

The scientists also want to make use of the two major European millimeter radio observatories (NOEMA and the IRAM 30m telescope) operated by IRAM, a joint German/French/Spanish radio astronomy institute.

The BlackHoleCam team will closely collaborate with the Event Horizon Telescope project, led by Shep Doeleman (MIT Haystack Observatory, Boston).

Principal Investigators:
Heino Falcke, Radboud University Nijmegen und ASTRON, Niederlande;
Michael Kramer, Max-Planck-Institut für Radioastronomie, Bonn und Universität Manchester, Großbritannien;

Luciano Rezzolla, Goethe-Universität Frankfurt und Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Potsdam.

Project Title:
BlackHoleCam: Imaging the Event Horizon of Black Holes
Contact Bonn:
Prof. Dr. Michael Kramer
Director and Head of Research Department "Fundamental Physics in Radio Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Prof. Dr. Heino Falcke
Radboud-Universität Nimwegen, ASTRON & MPIfR Bonn
Mobile: +49 151 23040365
E-Mail: h.falcke@astro.ru.nl
Dr. Norbert Junkes
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de
Contact Frankfurt:
Prof. Dr. Luciano Rezzolla
Institut für Theoretische Physik, Campus Riedberg
Fon: +49(0)69-798-47871
E-Mail: rezzolla@th.physik.uni-frankfurt.de
Dr. Anne Hardy
Press Officer
Fon: +49(0)69-798-29228
hardy@pvw.uni-frankfurt.de
Contact Potsdam:
Prof. Dr. Luciano Rezzolla
Head of Research Group „Modelling of Gravitational Waves“ at Albert-Einstein-Institut

E-Mail: luciano.rezzolla@aei.mpg.de

Dr. Elke Müller
Press Officer
Tel. +49(0) 331-567-7303
E-Mail: elke.müller@aei.mpg.de

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de/announcements/2013/8

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>