Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An efficient method for solving sound propagation in range-dependent ocean waveguides was found

10.04.2012
The coupled normal mode method is a powerful approach for solving range-dependent propagation problems in underwater acoustics. An important area of study is to improve stability and efficiency so as to be able to deal with complex scenarios in a realistic environment.

Professor LUO Wenyu and his group from the State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, set out to tackle this problem. After several years of innovative research, they have developed an accurate, efficient, and numerically stable coupled normal mode method to solve the range-dependent propagation problem. Their work, entitled "A numerically stable coupled-mode formulation for acoustic propagation in range-dependent waveguides", was published in SCIENCE CHINA Physics, Mechanics & Astronomy. 2012, Vol. 55(4).


The source is located at a range of 4 km and a depth of 100 m by the: (a) analytical solution at 25 Hz; (b) present model at 25 Hz; (c) analytical solution at 100 Hz; (d) present model at 100 Hz. Credit: © Science China Press

Underwater sound propagation in range-dependent waveguides is critical to many studies and applications in the area of underwater acoustics. Neglect of waveguide range-dependence may lead to significant prediction errors. A number of approaches have been developed for solving this problem. Despite significant recent advances, problems such as intensive computation and instability remain unsolved. Therefore, the need for developing new approaches with better efficiency, stability, and accuracy is urgent.

In the method proposed by LUO et al., the direct global matrix (DGM) approach is applied. As is well-established, the primary advantage of the DGM approach is that it gives numerically stable solutions when there is evanescence across layers, and it does this without special numerical treatment. Therefore, the proposed method is unconditionally stable. Furthermore, by introducing appropriately normalized range solutions, the overflow problem inherent in certain existing models is eliminated. In addition, general source conditions were put forward, which significantly extends the applicability of the proposed model compared to existing models.

To validate a range-dependent model, we have the following possible methods: comparison with analytical solutions, checking energy conservation and reciprocity and inter-model comparison. The proposed method is validated by comparison with the analytical solution to an ideal wedge benchmark problem. Here, a range-dependent problem involving a wedge-shaped waveguide with pressure-release boundaries is analyzed. Since sound propagation towards the wedge apex will be completely backscattered due to perfectly reflecting boundaries, this test problem is an ideal benchmark for a full two-way solution to the wave equation. The comparison indicates that the proposed model is highly accurate and numerically stable (as shown in the Figure). Furthermore, this method provides high computational efficiency. The execution time for the proposed model is less than 10 % of that of the COUPLE model, which is a widely used coupled normal mode model. Note that although an ideal waveguide problem is used to validate the proposed method, the formulation presented also applies to realistic waveguides with penetrable bottoms and/or depth-variant sound speed profiles in water.

Implementation and promotion of this work will contribute significantly to the study of underwater sound propagation.

This research was partially supported by grants from the National Natural Science Foundation of China and the Knowledge Innovation Program of Chinese Academy of Sciences. The proposed method proves to be accurate, efficient, and numerically stable. The researchers suggest their work be extended and applied to the study of three-dimensional effects, for instance, the horizontal refraction that is present in complex environments. This will have significant impact on the study of three-dimensional underwater sound propagation.

See the article: Luo W Y, Yang C M, Qin J X, et al. A numerically stable coupled-mode formulation for acoustic propagation in range-dependent waveguides. SCIENCE CHINA Physics, Mechanics & Astronomy, 2012, 55(4): 572-588

Luo WenYu | EurekAlert!
Further information:
http://www.ioa.ac.cn
http://zh.scichina.com/english/

Further reports about: Acoustics Astronomy DGM propagation problems underwater acoustics

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>