Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Earth survived birth

08.01.2010
New simulation presented at astronomy meeting reveals planet migration prevents plunge into sun

For the last 20 years, the best models of planet formation—or how planets grow from dust in a gas disk—have contradicted the very existence of Earth. These models assumed locally constant temperatures within a disk, and the planets plunge into the Sun.

Now, new simulations from researchers at the American Museum of Natural History and the University of Cambridge show that variations in temperature can lead to regions of outward and inward migration that safely trap planets on orbits. When the protoplanetary disk begins to dissipate, planets are left behind, safe from impact with their parent star. The results of this research are being presented this week at the 2010 meeting of the American Astronomical Society in Washington, D.C.

"We are trying to understand how planets interact with the gas disks from which they form as the disk evolves over its lifetime," says Mordecai-Mark Mac Low, Curator of Astrophysics and Division Chair of Physical Sciences at the Museum. "We show that the planetoids from which the Earth formed can survive their immersion in the gas disk without falling into the Sun."

During the birth of a star, a disk of gas and dust forms. The midplane of this dusty disk is opaque and cannot quickly cool by radiating heat to outer space. Until recently, no one has included temperature variation in models of planet formation. Co-author Sijme-Jan Paardekooper of the University of Cambridge ran groundbreaking new simulations like that most recently published online (http://arxiv.org/abs/0909.4552). His work shows that the direction of migration of low-mass planets in disks depends on the detailed temperature structure of the disk. This key insight lays the groundwork for the current work.

The American Astronomical Society presentation incorporates the results of Paardekooper's local models into the long-term evolution of the temperature and density structure of a protoplanetary disk. The result of the simulation is that, over the lifetime of a disk, planets get trapped in orbits between regions of inward and outward migration. The orbits slowly move inward as the disk dissipates. Once the gas densities drop low enough for the planets to no longer be influenced by disk, the planets are dropped into an orbit similar to the orbits of planets around the Sun. The radius of the orbit at which a planet is released depends on its mass.

"We used a one-dimensional model for this project," says co-author Wladimir Lyra, a postdoctoral researcher in the Department of Astrophysics at the Museum. "Three dimensional models are so computationally expensive that we could only follow the evolution of disks for about 100 orbits—about 1,000 years. We want to see what happens over the entire multimillion year lifetime of a disk."

Mac Low is presenting this research at the upcoming American Astronomical Society meetings in Washington, D.C. on January 6 with a press conference on the following day (January 7 at 10:30 am: "Spicing up the solar system.") A research paper is currently submitted to The Astrophysical Journal, authored by Lyra, Paardekooper, and Mac Low. This research was funded by the American Museum of Natural History, the National Science Foundation, and NASA.

Kristin Elise Phillips | EurekAlert!
Further information:
http://www.amnh.org

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>