Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Earth survived birth

08.01.2010
New simulation presented at astronomy meeting reveals planet migration prevents plunge into sun

For the last 20 years, the best models of planet formation—or how planets grow from dust in a gas disk—have contradicted the very existence of Earth. These models assumed locally constant temperatures within a disk, and the planets plunge into the Sun.

Now, new simulations from researchers at the American Museum of Natural History and the University of Cambridge show that variations in temperature can lead to regions of outward and inward migration that safely trap planets on orbits. When the protoplanetary disk begins to dissipate, planets are left behind, safe from impact with their parent star. The results of this research are being presented this week at the 2010 meeting of the American Astronomical Society in Washington, D.C.

"We are trying to understand how planets interact with the gas disks from which they form as the disk evolves over its lifetime," says Mordecai-Mark Mac Low, Curator of Astrophysics and Division Chair of Physical Sciences at the Museum. "We show that the planetoids from which the Earth formed can survive their immersion in the gas disk without falling into the Sun."

During the birth of a star, a disk of gas and dust forms. The midplane of this dusty disk is opaque and cannot quickly cool by radiating heat to outer space. Until recently, no one has included temperature variation in models of planet formation. Co-author Sijme-Jan Paardekooper of the University of Cambridge ran groundbreaking new simulations like that most recently published online (http://arxiv.org/abs/0909.4552). His work shows that the direction of migration of low-mass planets in disks depends on the detailed temperature structure of the disk. This key insight lays the groundwork for the current work.

The American Astronomical Society presentation incorporates the results of Paardekooper's local models into the long-term evolution of the temperature and density structure of a protoplanetary disk. The result of the simulation is that, over the lifetime of a disk, planets get trapped in orbits between regions of inward and outward migration. The orbits slowly move inward as the disk dissipates. Once the gas densities drop low enough for the planets to no longer be influenced by disk, the planets are dropped into an orbit similar to the orbits of planets around the Sun. The radius of the orbit at which a planet is released depends on its mass.

"We used a one-dimensional model for this project," says co-author Wladimir Lyra, a postdoctoral researcher in the Department of Astrophysics at the Museum. "Three dimensional models are so computationally expensive that we could only follow the evolution of disks for about 100 orbits—about 1,000 years. We want to see what happens over the entire multimillion year lifetime of a disk."

Mac Low is presenting this research at the upcoming American Astronomical Society meetings in Washington, D.C. on January 6 with a press conference on the following day (January 7 at 10:30 am: "Spicing up the solar system.") A research paper is currently submitted to The Astrophysical Journal, authored by Lyra, Paardekooper, and Mac Low. This research was funded by the American Museum of Natural History, the National Science Foundation, and NASA.

Kristin Elise Phillips | EurekAlert!
Further information:
http://www.amnh.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>