Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Earth siblings can be different!

Chemical clues on the formation of planetary systems

The study of the photospheric stellar abundances of the planet-host stars is the key to understanding how protoplanets form, as well as which protoplanetary clouds evolve planets and which do not.

These studies, which have important implications for models of giant planet formation and evolution, also help us to investigate the internal and atmospheric structure and composition of extrasolar planets..

Theoretical studies suggest that C/O and Mg/Si, are the most important elemental ratios in determining the mineralogy of terrestrial planets, and they can give us information about the composition of these planets. The C/O ratio controls the distribution of Si among carbide and oxide species, while Mg/Si gives information on the silicate mineralogy. In 2010 Bond et al. (2010b) carried out the first numerical simulations of planet formation in which the chemical composition of the proto-planetary cloud was taken as an input parameter. Terrestrial planets were found to form in all the simulations with a wide variety of chemical compositions so these planets might be very different from the Earth.
Delgado Mena et al. (2010) have carried out the first detailed and uniform study of C, O, Mg and Si abundances for 61 stars with detected planets and 270 stars without detected planets from the homogeneous high-quality unbiased HARPS GTO sample. They found mineralogical ratios quite different from those in the Sun, showing that there is a wide variety of planetary systems which are unlike the Solar System. Many planetary-host stars present a Mg/Si value lower than 1, so their planets will have a high Si content to form species such as MgSiO3. This type of composition can have important implications for planetary processes like plate tectonics, atmospheric composition and volcanism.

'There could be billions of Earthlike planets in the Universe but a great majority of them may have a totally different internal and atmospheric structure. Building planets in chemically non-solar environments (which are very common in the Universe) may lead to the formation of strange worlds, very different from the Earth! The amount of radioactive and some refractory elements (especially Si) may have drastic implications for planetary processes such as plate tectonics and volcanic activity,' concludes Garik Israelian.

The latest numerical simulations have shown that a wide range of extrasolar terrestrial planet bulk compositions are likely to exist. Planets simulated as forming around stars with Mg/Si ratios less than 1 are found to be Mg-depleted (compared to the Earth), consisting of silicate species such as pyroxene and various types of feldspars. Planetary carbon abundances also vary in accordance with the host stars' C/O ratio. The predicted abundances are in keeping with observations of polluted white dwarfs (expected to have accreted their inner planets during their previous red giant stage).
'The observed variations in the key C/O and Mg/Si ratios for known planetary host stars implies that a wide variety of extrasolar terrestrial planet compositions are likely to exist, ranging from relatively "Earthlike" planets to those that are dominated by C, such as graphite and carbide phases (e.g. SiC, TiC),' Delgado Mena stresses.

The results of Delgado Mena et al. (2010) were used in this study as they are the first to determine the abundance of all of the required elements in a completely internally consistent manner, using high quality spectra and an identical approach for all stars and elements, for a large sample of both host and non-host stars.

The chemical and dynamical simulations were combined by assuming that each embryo retains the composition of its formation location and contributes the same composition to the simulated terrestrial planet. The innermost terrestrial planets (located within ∼0.5 AU from the host star) contain a significant amount of the refractory elements Al and Ca (∼47% of the planetary mass). Planets forming beyond ∼0.5 AU from the host star contain steadily less Al and Ca with increasing distance. One planetary system, 55 Cnc, has a C/O ratio above 1 (C/O = 1.12). This system produced carbon-enriched "Earthlike" planets. All of the terrestrial planets considered in this work have compositions dominated by O, Fe, Mg and Si, most of these elements being delivered in the form of silicates or metals (in the case of iron). However, important differences between those planets forming in systems with C/O 0.8 (55Cnc) have been found.

'We are working hard to decrease abundance measurement errors and make the results of theoretical models and numerical simulations more reliable,' comments González Hernández, 'There is much work to be done'.

The members of the research team are: Garik Israelian and Jonay González Hernández (IAC), Elisa Delgado Mena and N. Santos (University of Porto, Portugal), and J. Carter-Bond and D. O'Brien (Planetary Science Institute, Tucson, Arizona). These results will be reported in The Astrophysical Journal Letters.

Garik Israelian | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>