Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Earth’s magnetic field remains a charged mystery

16.06.2009
400 years of discussion and we’re still not sure what creates the Earth’s magnetic field, and thus the magnetosphere, despite the importance of the latter as the only buffer between us and deadly solar wind of charged particles (made up of electrons and protons). New research raises question marks about the forces behind the magnetic field and the structure of Earth itself.

The controversial new paper published in New Journal of Physics (co-owned by the Institute of Physics and the German Physical Society), ‘Secular variation of the Earth’s magnetic field: induced by the ocean flow?’, will deflect geophysicists’ attention from postulated motion of conducting fluids in the Earth’s core, the twentieth century’s answer to the mysteries of geomagnetism and magnetosphere.

Professor Gregory Ryskin from the School of Engineering and Applied Science at Northwestern University in Illinois, US, has defied the long-standing convention by applying equations from magnetohydrodynamics to our oceans’ salt water (which conducts electricity) and found that the long-term changes (the secular variation) in the Earth’s main magnetic field are possibly induced by our oceans’ circulation.

With calculations thus confirming Ryskin’s suspicions, there were also time and space correlations - specific indications of the integral relationship between the oceans and our magnetospheric buffer. For example, researchers had recorded changes in the intensity of current circulation in the North Atlantic; Ryskin shows that these appear strongly correlated with sharp changes in the rate of geomagnetic secular variation (“geomagnetic jerks”).

Tim Smith, senior publisher of the New Journal of Physics, said, "This article is controversial and will no doubt cause vigorous debate, and possibly strong opposition, from some parts of the geomagnetism community. As the author acknowledges, the results by no means constitute a proof but they do suggest the need for further research into the possibility of a direct connection between ocean flow and the secular variation of the geomagnetic field."

In the early 1920s, Einstein highlighted the large challenge that understanding our Magnetosphere poses. It was later suggested that the Earth’s magnetic field could be a result of the flow of electrically-conducting fluid deep inside the Earth acting as a dynamo.

In the second half of the twentieth century, the dynamo theory, describing the process through which a rotating, convecting, and electrically conducting fluid acts to maintain a magnetic field, was used to explain how hot iron in the outer core of the Earth creates a magnetosphere.

The journal paper also raises questions about the structure of our Earth’s core.

Familiar text book images that illustrate a flow of hot and highly electrically-conducting fluid at the core of the Earth are based on conjecture and could now be rendered invalid. As the flow of fluids at the Earth’s core cannot be measured or observed, theories about changes in the magnetosphere have been used, inversely, to infer the existence of such flow at the core of the Earth.

While Ryskin’s research looks only at long-term changes in the Earth’s magnetic field, he points out that, “If secular variation is caused by the ocean flow, the entire concept of the dynamo operating in the Earth’s core is called into question: there exists no other evidence of hydrodynamic flow in the core.”

On a practical level, it means the next time you use a compass you might need to thank the seas and oceans for influencing the force necessary to guide the way.

Dr Raymond Shaw, professor of atmospheric physics at Michigan Technological University, said, “It should be kept in mind that the idea Professor Ryskin is proposing in his paper, if valid, has the potential to deem irrelevant the ruling paradigm of geomagnetism, so it will be no surprise to find individuals who are strongly opposed or critical."

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>