Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Earth’s magnetic field remains a charged mystery

16.06.2009
400 years of discussion and we’re still not sure what creates the Earth’s magnetic field, and thus the magnetosphere, despite the importance of the latter as the only buffer between us and deadly solar wind of charged particles (made up of electrons and protons). New research raises question marks about the forces behind the magnetic field and the structure of Earth itself.

The controversial new paper published in New Journal of Physics (co-owned by the Institute of Physics and the German Physical Society), ‘Secular variation of the Earth’s magnetic field: induced by the ocean flow?’, will deflect geophysicists’ attention from postulated motion of conducting fluids in the Earth’s core, the twentieth century’s answer to the mysteries of geomagnetism and magnetosphere.

Professor Gregory Ryskin from the School of Engineering and Applied Science at Northwestern University in Illinois, US, has defied the long-standing convention by applying equations from magnetohydrodynamics to our oceans’ salt water (which conducts electricity) and found that the long-term changes (the secular variation) in the Earth’s main magnetic field are possibly induced by our oceans’ circulation.

With calculations thus confirming Ryskin’s suspicions, there were also time and space correlations - specific indications of the integral relationship between the oceans and our magnetospheric buffer. For example, researchers had recorded changes in the intensity of current circulation in the North Atlantic; Ryskin shows that these appear strongly correlated with sharp changes in the rate of geomagnetic secular variation (“geomagnetic jerks”).

Tim Smith, senior publisher of the New Journal of Physics, said, "This article is controversial and will no doubt cause vigorous debate, and possibly strong opposition, from some parts of the geomagnetism community. As the author acknowledges, the results by no means constitute a proof but they do suggest the need for further research into the possibility of a direct connection between ocean flow and the secular variation of the geomagnetic field."

In the early 1920s, Einstein highlighted the large challenge that understanding our Magnetosphere poses. It was later suggested that the Earth’s magnetic field could be a result of the flow of electrically-conducting fluid deep inside the Earth acting as a dynamo.

In the second half of the twentieth century, the dynamo theory, describing the process through which a rotating, convecting, and electrically conducting fluid acts to maintain a magnetic field, was used to explain how hot iron in the outer core of the Earth creates a magnetosphere.

The journal paper also raises questions about the structure of our Earth’s core.

Familiar text book images that illustrate a flow of hot and highly electrically-conducting fluid at the core of the Earth are based on conjecture and could now be rendered invalid. As the flow of fluids at the Earth’s core cannot be measured or observed, theories about changes in the magnetosphere have been used, inversely, to infer the existence of such flow at the core of the Earth.

While Ryskin’s research looks only at long-term changes in the Earth’s magnetic field, he points out that, “If secular variation is caused by the ocean flow, the entire concept of the dynamo operating in the Earth’s core is called into question: there exists no other evidence of hydrodynamic flow in the core.”

On a practical level, it means the next time you use a compass you might need to thank the seas and oceans for influencing the force necessary to guide the way.

Dr Raymond Shaw, professor of atmospheric physics at Michigan Technological University, said, “It should be kept in mind that the idea Professor Ryskin is proposing in his paper, if valid, has the potential to deem irrelevant the ruling paradigm of geomagnetism, so it will be no surprise to find individuals who are strongly opposed or critical."

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>