Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth-Based Solar Eclipse Research

12.06.2009
The July eclipse will be the 49th solar eclipse that Jay Pasachoff has viewed. A champion of using eclipse observations to study the solar atmosphere, he describes the science of eclipses in the cover story of the international journal Nature (June 11 issue). Pasachoff, who is chair of the International Astronomical Union's Working Group on Solar Eclipses, was invited to write the article as part of Nature's coverage of the International Year of Astronomy.

The July 22 total solar eclipse, visible from China and India (but not the United States), will be the longest in the 21st century. Teams of scientists from around the world will gather in China to study the corona, the sun's outermost atmosphere, for almost six minutes, unusually long for totality.

Most will be stationed at a 3,000-foot mountain site selected by Prof. Jay Pasachoff, a Caltech and Williams College astronomer and planetary scientist, in Tianhuangping, China, not far from Hangzhou or Shanghai.

The July event will be the 49th solar eclipse that Pasachoff has viewed. A champion of using eclipse observations to study the solar atmosphere, he describes the science of eclipses in the cover story of the international journal Nature (June 11 issue). Pasachoff, who is chair of the International Astronomical Union's Working Group on Solar Eclipses, was invited to write the article as part of Nature's coverage of the International Year of Astronomy.

The article describes the history of eclipse discoveries, such as the element helium and the verification of Einstein's general theory of relativity, as well as current themes in eclipse research.

One recent development in eclipse studies is the new computer capability of bringing out low-contrast features. One such spectacular image, involving processing by Miloslav Druckmüller of the Brno Institute of Technology in the Czech Republic, was selected by Nature for its cover.

The detailed structure of the corona is caused by the sun's magnetic field. Pasachoff's work with Druckmüller and with Vojtech Rusin and Metod Saniga of the solar observatory in Slovakia has led to several joint papers in the Astrophysical Journal on views of the changing corona. The corona changes not only from year to year with the sunspot cycle but also even within minutes, as the scientists saw by comparing their observations from Siberia and Mongolia at the last solar eclipse on Aug. 1, 2008. They plan to extend that work this summer with observations from India, China, and islands in the Pacific.

Pasachoff's team in China includes Bryce Babcock, staff physicist at Williams and several undergraduate students from Williams, where Pasachoff is Field Memorial Professor of Astronomy. He chose the site on a visit over two years ago to southern China together with Naomi Pasachoff, a research associate at Williams, and Beijing scientists Yihua Yan and Jin Zhu.

Pasachoff and his colleagues have been studying, in particular, why the solar corona has a temperature of millions of degrees, much hotter than the sun's surface. They do so by using a special rapid-readout electronic camera and single-color filters chosen to show only coronal gas. They look for oscillations with periods in the range of one second, which would signify certain classes of magnetic waves. The detailed structure of the corona, revealed by imaging in the visible and x-ray regions of the spectrum, and the correspondence of bright coronal regions with sunspot groups, shows that magnetism is the cause of coronal heating and the coronal structure. A competing set of ideas of how the corona is heated to millions of degrees involves ubiquitous nanoflares, that is, relatively tiny solar flares going off all the time.

Studies of eclipses, transits of Mercury and Venus across the face of the sun, and occultations of Pluto and other objects in the outer solar system proceed in tandem. For his eclipse studies, Pasachoff uses a set of electronic cameras provided by NASA's Planetary Sciences Division, primarily for use in studying Pluto and other objects in the outer solar system. His studies of Pluto's atmosphere started with similar cameras that had been provided for eclipse work.

Pasachoff's research this summer, as much of his work in the past, is supported mainly by a grant from the Committee for Research and Exploration of the National Geographic Society.

References:

International Astronomical Union's Working Group on Solar Eclipses: http://www.eclipses.info

Williams College eclipse expeditions:
www.williams.edu/astronomy/eclipse
Pasachoff's books and other publications:
http:// www.solarcorona.com

Jay M. Pasachoff | Newswise Science News
Further information:
http://www.eclipses.info
http://www.williams.edu/astronomy/eclipse

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>