Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth-Based Solar Eclipse Research

12.06.2009
The July eclipse will be the 49th solar eclipse that Jay Pasachoff has viewed. A champion of using eclipse observations to study the solar atmosphere, he describes the science of eclipses in the cover story of the international journal Nature (June 11 issue). Pasachoff, who is chair of the International Astronomical Union's Working Group on Solar Eclipses, was invited to write the article as part of Nature's coverage of the International Year of Astronomy.

The July 22 total solar eclipse, visible from China and India (but not the United States), will be the longest in the 21st century. Teams of scientists from around the world will gather in China to study the corona, the sun's outermost atmosphere, for almost six minutes, unusually long for totality.

Most will be stationed at a 3,000-foot mountain site selected by Prof. Jay Pasachoff, a Caltech and Williams College astronomer and planetary scientist, in Tianhuangping, China, not far from Hangzhou or Shanghai.

The July event will be the 49th solar eclipse that Pasachoff has viewed. A champion of using eclipse observations to study the solar atmosphere, he describes the science of eclipses in the cover story of the international journal Nature (June 11 issue). Pasachoff, who is chair of the International Astronomical Union's Working Group on Solar Eclipses, was invited to write the article as part of Nature's coverage of the International Year of Astronomy.

The article describes the history of eclipse discoveries, such as the element helium and the verification of Einstein's general theory of relativity, as well as current themes in eclipse research.

One recent development in eclipse studies is the new computer capability of bringing out low-contrast features. One such spectacular image, involving processing by Miloslav Druckmüller of the Brno Institute of Technology in the Czech Republic, was selected by Nature for its cover.

The detailed structure of the corona is caused by the sun's magnetic field. Pasachoff's work with Druckmüller and with Vojtech Rusin and Metod Saniga of the solar observatory in Slovakia has led to several joint papers in the Astrophysical Journal on views of the changing corona. The corona changes not only from year to year with the sunspot cycle but also even within minutes, as the scientists saw by comparing their observations from Siberia and Mongolia at the last solar eclipse on Aug. 1, 2008. They plan to extend that work this summer with observations from India, China, and islands in the Pacific.

Pasachoff's team in China includes Bryce Babcock, staff physicist at Williams and several undergraduate students from Williams, where Pasachoff is Field Memorial Professor of Astronomy. He chose the site on a visit over two years ago to southern China together with Naomi Pasachoff, a research associate at Williams, and Beijing scientists Yihua Yan and Jin Zhu.

Pasachoff and his colleagues have been studying, in particular, why the solar corona has a temperature of millions of degrees, much hotter than the sun's surface. They do so by using a special rapid-readout electronic camera and single-color filters chosen to show only coronal gas. They look for oscillations with periods in the range of one second, which would signify certain classes of magnetic waves. The detailed structure of the corona, revealed by imaging in the visible and x-ray regions of the spectrum, and the correspondence of bright coronal regions with sunspot groups, shows that magnetism is the cause of coronal heating and the coronal structure. A competing set of ideas of how the corona is heated to millions of degrees involves ubiquitous nanoflares, that is, relatively tiny solar flares going off all the time.

Studies of eclipses, transits of Mercury and Venus across the face of the sun, and occultations of Pluto and other objects in the outer solar system proceed in tandem. For his eclipse studies, Pasachoff uses a set of electronic cameras provided by NASA's Planetary Sciences Division, primarily for use in studying Pluto and other objects in the outer solar system. His studies of Pluto's atmosphere started with similar cameras that had been provided for eclipse work.

Pasachoff's research this summer, as much of his work in the past, is supported mainly by a grant from the Committee for Research and Exploration of the National Geographic Society.

References:

International Astronomical Union's Working Group on Solar Eclipses: http://www.eclipses.info

Williams College eclipse expeditions:
www.williams.edu/astronomy/eclipse
Pasachoff's books and other publications:
http:// www.solarcorona.com

Jay M. Pasachoff | Newswise Science News
Further information:
http://www.eclipses.info
http://www.williams.edu/astronomy/eclipse

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>