Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth-Based Solar Eclipse Research

12.06.2009
The July eclipse will be the 49th solar eclipse that Jay Pasachoff has viewed. A champion of using eclipse observations to study the solar atmosphere, he describes the science of eclipses in the cover story of the international journal Nature (June 11 issue). Pasachoff, who is chair of the International Astronomical Union's Working Group on Solar Eclipses, was invited to write the article as part of Nature's coverage of the International Year of Astronomy.

The July 22 total solar eclipse, visible from China and India (but not the United States), will be the longest in the 21st century. Teams of scientists from around the world will gather in China to study the corona, the sun's outermost atmosphere, for almost six minutes, unusually long for totality.

Most will be stationed at a 3,000-foot mountain site selected by Prof. Jay Pasachoff, a Caltech and Williams College astronomer and planetary scientist, in Tianhuangping, China, not far from Hangzhou or Shanghai.

The July event will be the 49th solar eclipse that Pasachoff has viewed. A champion of using eclipse observations to study the solar atmosphere, he describes the science of eclipses in the cover story of the international journal Nature (June 11 issue). Pasachoff, who is chair of the International Astronomical Union's Working Group on Solar Eclipses, was invited to write the article as part of Nature's coverage of the International Year of Astronomy.

The article describes the history of eclipse discoveries, such as the element helium and the verification of Einstein's general theory of relativity, as well as current themes in eclipse research.

One recent development in eclipse studies is the new computer capability of bringing out low-contrast features. One such spectacular image, involving processing by Miloslav Druckmüller of the Brno Institute of Technology in the Czech Republic, was selected by Nature for its cover.

The detailed structure of the corona is caused by the sun's magnetic field. Pasachoff's work with Druckmüller and with Vojtech Rusin and Metod Saniga of the solar observatory in Slovakia has led to several joint papers in the Astrophysical Journal on views of the changing corona. The corona changes not only from year to year with the sunspot cycle but also even within minutes, as the scientists saw by comparing their observations from Siberia and Mongolia at the last solar eclipse on Aug. 1, 2008. They plan to extend that work this summer with observations from India, China, and islands in the Pacific.

Pasachoff's team in China includes Bryce Babcock, staff physicist at Williams and several undergraduate students from Williams, where Pasachoff is Field Memorial Professor of Astronomy. He chose the site on a visit over two years ago to southern China together with Naomi Pasachoff, a research associate at Williams, and Beijing scientists Yihua Yan and Jin Zhu.

Pasachoff and his colleagues have been studying, in particular, why the solar corona has a temperature of millions of degrees, much hotter than the sun's surface. They do so by using a special rapid-readout electronic camera and single-color filters chosen to show only coronal gas. They look for oscillations with periods in the range of one second, which would signify certain classes of magnetic waves. The detailed structure of the corona, revealed by imaging in the visible and x-ray regions of the spectrum, and the correspondence of bright coronal regions with sunspot groups, shows that magnetism is the cause of coronal heating and the coronal structure. A competing set of ideas of how the corona is heated to millions of degrees involves ubiquitous nanoflares, that is, relatively tiny solar flares going off all the time.

Studies of eclipses, transits of Mercury and Venus across the face of the sun, and occultations of Pluto and other objects in the outer solar system proceed in tandem. For his eclipse studies, Pasachoff uses a set of electronic cameras provided by NASA's Planetary Sciences Division, primarily for use in studying Pluto and other objects in the outer solar system. His studies of Pluto's atmosphere started with similar cameras that had been provided for eclipse work.

Pasachoff's research this summer, as much of his work in the past, is supported mainly by a grant from the Committee for Research and Exploration of the National Geographic Society.

References:

International Astronomical Union's Working Group on Solar Eclipses: http://www.eclipses.info

Williams College eclipse expeditions:
www.williams.edu/astronomy/eclipse
Pasachoff's books and other publications:
http:// www.solarcorona.com

Jay M. Pasachoff | Newswise Science News
Further information:
http://www.eclipses.info
http://www.williams.edu/astronomy/eclipse

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>