Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Earth is not Enough

Researchers at the Max-Planck-Institut für Radioastronomie (MPIfR, Bonn, Germany) and the Astro Space Center (ASC, Moscow, Russia) have obtained the first detection of interferometric signals between the Effelsberg 100 m telescope in Germany, and the RadioAstron spacecraft telescope orbiting the Earth using the DiFX software correlator.
This breakthrough enables new research to be pursued by the collaborators at the highest angular resolutions in astronomy, with simultaneous observations of two radio telescopes more than 300,000 km apart. Both telescopes were targeted at BL Lacertae, an Active Galactic Nucleus at a distance of approximately 900 million light years.

RadioAstron is an international project for VLBI (Very Long Baseline Interferometry) observations in space, led by the Astro Space Center (ASC) in Moscow and employing a 10-meter radio antenna on board of the Russian Spektr-R satellite. Launched in July 2011, the Spektr-R is a spacecraft orbiting the Earth on an elliptical orbit reaching out to 350 000 km from Earth. Combining the space borne antenna together with other radio telescopes on Earth, the RadioAstron project uses interferometric measurements to achieve extremely high angular resolutions --- equivalent to the resolution that would be achieved by a single telescope the size of the distance from the Earth to the Moon!
The RadioAstron mission will enable astronomers to study exciting scientific topics including particle acceleration near supermassive black holes in active galactic nuclei, neutron stars and pulsars, to dark matter and dark energy.

The radio interferometry technique utilized by the RadioAstron mission relies on having pairs of telescopes that record the incoming radio wave signals, which are then electronically compared in a process called correlation. This processes, directly comparable to the optical "double-slit experiment" encountered in elementary optics classes by physics students, results in a series of sinusoidal intensity fluctuations as a function of the direction on the sky. Such sinusoidal variations are called "fringes" in radio astronomy, and the greater the distance between the two telescopes, the more precisely astronomers can measure the direction on the sky where a radio source is located.

In order to fit within the mass and size limits of the launch vehicle (rocket), the size of the RadioAstron antenna was limited to 10 meters. The RadioAstron antenna is therefore not very sensitive on its own. This is where the collaboration with the MPIfR is extremely important. The MPIfR operates the 100 meter diameter radio telescope in Effelsberg, Germany, a large and extremely sensitive radio telescope that is well suited for participating in interferometry experiments such as this.

First fringes for the RadioAstron project were already detected using the Effelsberg 100 m telescope and the ASC correlator in 2011 and presented in an earlier press release. The observation described here has targeted BL Lacertae, an Active Galactic Nucleus (AGN) in the constellation Lacerta (the Lizard) in a distance of approximately 900 million light years. With its high variability and significant optical polarization, BL Lacerta forms the prototype for a whole class of AGNs.

The figure shows an image of the first Effelsberg to RadioAstron fringe detection of BL Lacertae using the DiFX correlator with different colors showing the intensity of the measured fringe signal.

"An important new aspect of this analysis is that instead of having the radio signals processed by a hardware correlator, the radio signals were processed using the DiFX software correlator running on the VLBI computing stations at our institute in Bonn", states Anton Zensus, Director at MPIfR. "Our scientists, in consultation with RadioAstron experts, modified the DiFX source code to enable the use of radio signals from spacecraft orbiting the Earth." As traditional VLBI is performed using radio telescopes fixed to the surface of the Earth, these software changes included enabling DiFX to deal with telescopes moving in arbitrary ways, as well as correcting for the difference in the rate at which time progresses between the telescope on the ground and the spacecraft --- subtle changes predicted by the general relativity theory of Einstein that are essential for detecting interference signals between the two telescopes. The DiFX correlator is an open project involving many radio astronomers and geodetic (Earth science) scientists around the world, from Australia where it was initially developed to Europe and the United States. This will allow RadioAstron data to be processed using arrays of telescopes around the world, greatly opening up the opportunities for the RadioAstron mission to work together with other instruments around the world.

Another significant benefit of processing RadioAstron data using the DiFX correlator is that software tools commonly used by astronomers to process radio interferometry data already know how to use the data produced by DiFX, and astronomers can immediately start using their favorite software packages for processing RadioAstron data.

"This is an exciting development for the RadioAstron mission because it means that we can now successfully analyze the RadioAstron data from the point of view of studying the astronomy and physics", says James Anderson from Max-Planck-Institut für Radioastronomie. "We can sit down and make radio images of these objects at resolutions approaching the micro-arcsecond level --- something we have never been able to do before."
Dr. Andrei Lobanov,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-191

Dr. James Anderson,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-356

Prof. Dr. Anton Zensus,
Director and Head of Research Group "Radio Astronomy / VLBI",
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-378

Norbert Junkes | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>