Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's Milky Way Neighborhood Gets More Respect

05.06.2013
Our Solar System's Milky Way neighborhood just went upscale. We reside between two major spiral arms of our home galaxy, in a structure called the Local Arm.

New research using the ultra-sharp radio vision of the National Science Foundation's Very Long Baseline Array (VLBA) indicates that the Local Arm, previously thought to be only a small spur, instead is much more like the adjacent major arms, and is likely a significant branch of one of them.


CREDIT: Robert Hurt, IPAC; Bill Saxton, NRAO/AUI/NSF.

Old picture: Local Arm a small "spur" of Milky Way.


CREDIT: Robert Hurt, IPAC; Bill Saxton, NRAO/AUI/NSF.

New picture: Local Arm probable major branch of Perseus Arm.

"Our new evidence suggests that the Local Arm should appear as a prominent feature of the Milky Way," said Alberto Sanna, of the Max-Planck Institute for Radio Astronomy. Sanna and his colleagues presented their findings to the American Astronomical Society's meeting in Indianapolis, Indiana.

Determining the structure of our own Galaxy has been a longstanding problem for astronomers because we are inside it. In order to map the Milky Way, scientists need to accurately measure the distances to objects within the Galaxy. Measuring cosmic distances, however, also has been a difficult task, leading to large uncertainties. The result is that, while astronomers agree that our Galaxy has a spiral structure, there are disagreements on how many arms it has and on their specific locations.

To help resolve this problem, researchers turned to the VLBA and its ability to make the most accurate measurements of positions in the sky available to astronomers. The VLBA's capabilities allowed the astronomers to use a technique that yields accurate distance measurements unambiguously through simple trigonometry.

By observing objects when Earth is on opposite sides of its orbit around the Sun, astronomers can measure the subtle shift in the object's apparent position in the sky, compared to the background of more-distant objects. This effect is called parallax, and can be demonstrated by holding your finger close to your nose and alternately closing each eye.

The VLBA's ability to precisely measure very tiny shifts in apparent position allows scientists to use this trigonometric method to directly determine distances much farther from Earth than previously was possible.

The astronomers used this method to measure the distances to star-forming regions in the Milky Way where water and methanol molecules are boosting radio waves in the same fashion that a laser boosts light waves. These objects, called masers, are like lighthouses for the radio telescopes. The VLBA observations, carried out from 2008 to 2012, produced accurate distance measurements to the masers and also allowed the scientists to track their motion through space.

A striking result was an upgrade to the status of the Local Arm within which our Solar System resides. We are between two major spiral arms of the Galaxy, the Sagittarius Arm and the Perseus Arm. The Sagittarius Arm is closer to the Galactic center and the Perseus Arm is farther out in the Galaxy. The Local Arm previously was thought to be a minor structure, a "spur" between the two longer arms. Details of this finding were published in the Astrophysical Journal by Xu Ye and collaborators.

"Based on both the distances and the space motions we measured, our Local Arm is not a spur. It is a major structure, maybe a branch of the Perseus Arm, or possibly an independent arm segment," Sanna said.

The scientists also presented new details about the distribution of star formation in the Perseus Arm, and about the more-distant Outer Arm, which encompasses a warp in our Galaxy.

The new observations are part of an ongoing project called the Bar and Spiral Structure Legacy (BeSSeL) survey, a major effort to map the Milky Way using the VLBA. The acronym honors Friedrich Wilhelm Bessel, the German astronomer who made the first accurate measurement of a star's parallax in 1838.

The VLBA, dedicated in 1993, uses ten, 25-meter-diameter dish antennas distributed from Hawaii to St. Croix in the Caribbean. It is operated from the NRAO's Domenici Science Operations Center in Socorro, NM. All ten antennas work together as a single telescope with the greatest resolving power available to astronomy. This unique capability has produced landmark contributions to numerous scientific fields, ranging from Earth tectonics, climate research, and spacecraft navigation, to cosmology.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | Newswise
Further information:
http://www.nrao.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>