Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Earth's Energy Budget Remained Out of Balance Despite Unusually Low Solar Activity

A new NASA study underscores the fact that greenhouse gases generated by human activity -- not changes in solar activity -- are the primary force driving global warming.

The study offers an updated calculation of the Earth's energy imbalance, the difference between the amount of solar energy absorbed by Earth's surface and the amount returned to space as heat. The researchers' calculations show that, despite unusually low solar activity between 2005 and 2010, the planet continued to absorb more energy than it returned to space.

James Hansen, director of NASA's Goddard Institute for Space Studies (GISS) in New York City, led the research. Atmospheric Chemistry and Physics published the study last December.

Total solar irradiance, the amount of energy produced by the sun that reaches the top of each square meter of the Earth's atmosphere, typically declines by about a tenth of a percent during cyclical lulls in solar activity caused by shifts in the sun's magnetic field. Usually solar minimums occur about every eleven years and last a year or so, but the most recent minimum persisted more than two years longer than normal, making it the longest minimum recorded during the satellite era.

Pinpointing the magnitude of Earth's energy imbalance is fundamental to climate science because it offers a direct measure of the state of the climate. Energy imbalance calculations also serve as the foundation for projections of future climate change. If the imbalance is positive and more energy enters the system than exits, Earth grows warmer. If the imbalance is negative, the planet grows cooler.

Hansen's team concluded that Earth has absorbed more than half a watt more solar energy per square meter than it let off throughout the six year study period. The calculated value of the imbalance (0.58 watts of excess energy per square meter) is more than twice as much as the reduction in the amount of solar energy supplied to the planet between maximum and minimum solar activity (0.25 watts per square meter).

"The fact that we still see a positive imbalance despite the prolonged solar minimum isn't a surprise given what we've learned about the climate system, but it's worth noting because this provides unequivocal evidence that the sun is not the dominant driver of global warming," Hansen said.

According to calculations conducted by Hansen and his colleagues, the 0.58 watts per square meter imbalance implies that carbon dioxide levels need to be reduced to about 350 parts per million to restore the energy budget to equilibrium. The most recent measurements show that carbon dioxide levels are currently 392 parts per million and scientists expect that concentration to continue to rise in the future.

Climate scientists have been refining calculations of the Earth's energy imbalance for many years, but this newest estimate is an improvement over previous attempts because the scientists had access to better measurements of ocean temperature than researchers have had in the past.

The improved measurements came from free-floating instruments that directly monitor the temperature, pressure and salinity of the upper ocean to a depth of 2,000 meters (6,560 feet). The network of instruments, known collectively as Argo, has grown dramatically in recent years since researchers first began deploying the floats a decade ago. Today, more than 3,400 Argo floats actively take measurements and provide data to the public, mostly within 24 hours.

Hansen's analysis of the information collected by Argo, along with other ground-based and satellite data, show the upper ocean has absorbed 71 percent of the excess energy and the Southern Ocean, where there are few Argo floats, has absorbed 12 percent. The abyssal zone of the ocean, between about 3,000 and 6,000 meters (9,800 and 20,000 feet) below the surface, absorbed five percent, while ice absorbed eight percent and land four percent.

Data collected by Argo floats, such as this one, helped Hansen's team improve the calculation of Earth's energy imbalance. Credit: Argo Project Office

› Larger image The updated energy imbalance calculation has important implications for climate modeling. Its value, which is slightly lower than previous estimates, suggests that most climate models overestimate how readily heat mixes deeply into the ocean and significantly underestimates the cooling effect of small airborne particles called aerosols, which along with greenhouse gases and solar irradiance are critical factors in energy imbalance calculations.

"Climate models simulate observed changes in global temperatures quite accurately, so if the models mix heat into the deep ocean too aggressively, it follows that they underestimate the magnitude of the aerosol cooling effect," Hansen said.

Aerosols, which can either warm or cool the atmosphere depending on their composition and how they interact with clouds, are thought to have a net cooling effect. But estimates of their overall impact on climate are quite uncertain given how difficult it is to measure the distribution of the particles on a broad scale. The new study suggests that the overall cooling effect from aerosols could be about twice as strong as current climate models suggest, largely because few models account for how the particles affect clouds.

"Unfortunately, aerosols remain poorly measured from space," said Michael Mishchenko, a scientist also based at GISS and the project scientist for Glory, a satellite mission designed to measure aerosols in unprecedented detail that was lost after a launch failure in early 2011. "We must have a much better understanding of the global distribution of detailed aerosol properties in order to perfect calculations of Earth's energy imbalance," said Mishchenko.

Adam Voiland | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>