Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Each grain is different

15.08.2014

The interstellar dust particles from the Stardust mission show great variations in their elemental composition and structure

The space between the stars is not empty, but filled with interstellar matter – gas and dust particles. But all dust is not the same: An international team from 33 research institutes, including the Max Planck Institute for Chemistry in Mainz, discovered that the structure and chemical composition of interstellar dust particles collected by the Stardust spacecraft shows a wide diversity.


Stardust on the way through the universe: The unfolded „dust catcher“ of the spacecraft is clearly visible in this illustration. NASA/JPL


Cosmic searching for traces: The arrow points to a particle that was captured by the spacecraft, Stardust (left). Next to it, a magnified picture of the impact spot.

Westphal et al. 2014, Science/AAAS

2006 was an important year for the exploration of our solar system: NASA’s Stardust spacecraft brought back to Earth cometary dust as well as smallest amounts of material from the enormous space between the stars, the interstellar space.

This material is of scientific significance for various reasons: it refracts the light of stars and allows for conclusions about the size of the universe. It also provides the raw material for the formation of stars and planets and serves as a catalyst for the formation of molecules.

In the current issue of the science magazine ‘Science’, an international team from 33 research institutes presents, for the first time, the structure and chemical composition of interstellar dust particles, which were collected by the Stardust space craft.

The researchers identified seven particles with a total mass of a few picograms. One picogram is the equivalent of one trillionth of a gram. Even if the number of particles and mass seems very low, the extraterrestrial material is scientific unchartered territory for Peter Hoppe from the Max Planck Institute for Chemistry.

‘This is the first time that we were able to examine contemporary interstellar dust on Earth,’ says the researcher from Mainz. Previously, the extraterrestrial material could only be analyzed by means of spectroscopic observations.

‘We have found that the size, elemental composition and the structure of the particles differ to a great extent. We did not expect that.’ The term contemporary is relative for astrophysicists such as Hoppe, as the average lifetime of dust particles in interstellar space is around 500 million years; compared to our 4.6 billion year-old solar system this is quite a short period.

Contrary to predictions, two dust particles were found to be crystalline and not amorphous, i.e. without an ordered structure of atoms. ‘We had expected a crystalline structure in maximum two percent of the dust,’ says Jan Leitner, a member of Peter Hoppe’s team. According to previous theories, the majority of crystalline particles in interstellar space is destroyed by high-energy cosmic rays and shock waves or converted into amorphous dust.

For the collection of dust particles, the spacecraft was equipped with a special particle collector: On the top of the spacecraft, a tennis racket-sized round grid would protrude into space and catch dust particles on its surface.
Aluminum foil was wrapped around the walls of these sample tray frames. A specially developed aerogel was packed in the aluminum grid, which slowed down the particles on impact, keeping their structure intact.

The Stardust mission, which ran a total of six years, was divided into two phases for the collection of cometary dust and interstellar dust. First, the spacecraft collected interstellar dust at the front of the collector, for a period of 195 days. NASA turned the collector by 180 degrees for the subsequent flight through the tail of comet Wild 2, so that the cometary particles landed on the reverse side.

Back on Earth, spotting the dust particles presented a seemingly impossible task for scientists, as the dust collectors needed to be scanned micron by micron for impact. This would be the equivalent of an analysis of more than 1.5 million photos of the aerogel. Researchers then approached the public in an unprecedented mission and uploaded the photographs to a website.

Thousands of volunteers joined ‘Stardust@home’ and analyzed the images, following a detailed instruction, in order to find the sought-after dust. On the overall, the volunteers made three finds - a great success, which the 66 researchers expressed by naming the ‘30,714 Stardust@home dusters’ in the list of authors of the current issue of Science. Altogether, up to now, four dust particles where found on the aluminum foil and three in the aerogel.

Peter Hoppe’s team concentrated on the foil. The Mainz team had received a 90 square millimeter piece from NASA. “Searching the foil was a true labor of Sisyphus, as we analyzed approximately 50,000 images. As the dust craters are smaller than a thousandth of a millimeter, we scanned the foil, piece by piece, using an electron microscope,” the researcher Jan Leitner remembers.

The team found five particles. However, four of the craters only contained abrasion material from the solar cells of the spacecraft. One sample, however, was in fact extraterrestrial and received the unspectacular name I1044N,3. Chemical analysis revealed that this was a ferromagnesian silicate. Other samples contained iron sulfide and elemental iron in addition to aluminum, chromium, manganese, nickel and calcium. As it was not possible to prove the presence of these forms of iron by spectroscopic investigations from Earth, this was another success of two years of working for the researcher community.

Although only a small portion of the surface of the Stardust collector has been scanned, for the time being, the analysis of the interstellar dust is completed for Peter Hoppe and his team. The remaining samples are now available to scientists around the world for identification and analysis of further particles. Perhaps, these studies will provide some new surprises. (MMG/SB)

Original Publication

Westphal et al.
Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft
Science, 15. August 2014: Vol. 345 no. 6198 pp. 786-791
doi: 10.1126/science.1252496

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/each-grain-is-different.html

Dr. Wolfgang Huisl | Max-Planck-Institut für Chemie

Further reports about: Max-Planck-Institut Stardust crystalline interstellar mass particles spacecraft structure

More articles from Physics and Astronomy:

nachricht Dartmouth-led black hole hunters tackle a cosmic conundrum
21.04.2015 | Dartmouth College

nachricht High-Power Laser Spinoff Proves Versatility Is Strength
20.04.2015 | University of Wisconsin-Madison

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

Im Focus: Advances in Molecular Electronics: Lights On – Molecule On

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also...

Im Focus: Pruning of Blood Vessels: Cells Can Fuse With Themselves

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the...

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Participation sought: new citizen science project

21.04.2015 | Life Sciences

Decreasing biodiversity affects productivity of remaining plants

21.04.2015 | Life Sciences

OSU innovation boosts Wi-Fi bandwidth tenfold

21.04.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>