Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust factory in a dead star

27.02.2009
Interstellar space dust from a dead star identified by a research team led by The University of Nottingham could unlock some of the mysteries of the early universe.

Dr Loretta Dunne and her team have found new evidence of huge dust production in the Cassiopeia A supernova remnant, the remains of a star that exploded about 300 years ago. The paper is set to be published in the Monthly Notices of the Royal Astronomical Society.

Interstellar dust is found throughout the cosmos. It is responsible for the dark patches seen in the Milky Way on a moonless night. It consists of carbon and silicate particles, about the size of those in cigarette smoke. The dust helps stars like the Sun to form and subsequently coagulates to form planets like Earth and the cores of giant gas planets like Jupiter. It is found in huge quantities in galaxies, even very early in the history of the universe.

But the origin of all this dust is a mystery. Does it condense like snowflakes in the winds of red giant stars or is it produced in supernovae — the violent death-throes of massive stars? Supernovae are an efficient way of producing dust in a blink of the cosmic eye, as massive stars evolve relatively quickly, taking a few million years to reach their supernova stage. In contrast lower-mass stars like our Sun take billions of years to reach their dust-forming red giant phase. Despite many decades of research, astronomers have still not found conclusive evidence that supernovae can produce dust in the quantities required to account for the dust they see in the early universe.

Using the SCUBA polarimeter on the James Clerk Maxwell Telescope in Hawaii, the scientists searched for a signal from dust grains spinning in the strong magnetic field of the supernova remnant. If the dust grains are slightly elongated (like little cigars) they tend to line up the same way and produce a polarised signal. When the polarimeter detector is rotated, the strength of the signal changes — much the same as if you look at the sky with polaroid sunglasses, held at different angles.

The polarisation signal from the supernova dust is the strongest ever measured anywhere in the Milky Way, marking it out as unusual. It emits more radiation per gram than regular interstellar dust and the alignment of the grains must be very orderly to produce such highly polarised emission.

“It is like nothing we’ve ever seen” said Dr Dunne, who is based in the Centre for Astronomy and Particle Physics at The University of Nottingham. “It could be that the extreme conditions inside the supernova remnant are responsible for the strong polarised signal, or it could be that the dust grains themselves are highly unusual”

Team member Professor Rob Ivison of the UK Astronomy Technology Centre at the Institute for Astronomy, University of Edinburgh comments further. “It could be that the material we're seeing is in the form of iron needles — exotic, slender, metallic whiskers. If these grains are distributed throughout the Universe they may be re-radiating microwaves. This has major consequences for our understanding of the cosmic microwave background — one of the most important building blocks of the Big Bang model of our Universe”.

Alternatively, the grains could be a more pristine version of the dust found elsewhere in the Galaxy, the same composition but able to produce more radiation due to the nuances of its 3-D structure. A final verdict requires further observations using the Herschel Space Observatory, to be launched this year by the European Space Agency.

Dr Loretta Dunne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>