Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust factory in a dead star

27.02.2009
Interstellar space dust from a dead star identified by a research team led by The University of Nottingham could unlock some of the mysteries of the early universe.

Dr Loretta Dunne and her team have found new evidence of huge dust production in the Cassiopeia A supernova remnant, the remains of a star that exploded about 300 years ago. The paper is set to be published in the Monthly Notices of the Royal Astronomical Society.

Interstellar dust is found throughout the cosmos. It is responsible for the dark patches seen in the Milky Way on a moonless night. It consists of carbon and silicate particles, about the size of those in cigarette smoke. The dust helps stars like the Sun to form and subsequently coagulates to form planets like Earth and the cores of giant gas planets like Jupiter. It is found in huge quantities in galaxies, even very early in the history of the universe.

But the origin of all this dust is a mystery. Does it condense like snowflakes in the winds of red giant stars or is it produced in supernovae — the violent death-throes of massive stars? Supernovae are an efficient way of producing dust in a blink of the cosmic eye, as massive stars evolve relatively quickly, taking a few million years to reach their supernova stage. In contrast lower-mass stars like our Sun take billions of years to reach their dust-forming red giant phase. Despite many decades of research, astronomers have still not found conclusive evidence that supernovae can produce dust in the quantities required to account for the dust they see in the early universe.

Using the SCUBA polarimeter on the James Clerk Maxwell Telescope in Hawaii, the scientists searched for a signal from dust grains spinning in the strong magnetic field of the supernova remnant. If the dust grains are slightly elongated (like little cigars) they tend to line up the same way and produce a polarised signal. When the polarimeter detector is rotated, the strength of the signal changes — much the same as if you look at the sky with polaroid sunglasses, held at different angles.

The polarisation signal from the supernova dust is the strongest ever measured anywhere in the Milky Way, marking it out as unusual. It emits more radiation per gram than regular interstellar dust and the alignment of the grains must be very orderly to produce such highly polarised emission.

“It is like nothing we’ve ever seen” said Dr Dunne, who is based in the Centre for Astronomy and Particle Physics at The University of Nottingham. “It could be that the extreme conditions inside the supernova remnant are responsible for the strong polarised signal, or it could be that the dust grains themselves are highly unusual”

Team member Professor Rob Ivison of the UK Astronomy Technology Centre at the Institute for Astronomy, University of Edinburgh comments further. “It could be that the material we're seeing is in the form of iron needles — exotic, slender, metallic whiskers. If these grains are distributed throughout the Universe they may be re-radiating microwaves. This has major consequences for our understanding of the cosmic microwave background — one of the most important building blocks of the Big Bang model of our Universe”.

Alternatively, the grains could be a more pristine version of the dust found elsewhere in the Galaxy, the same composition but able to produce more radiation due to the nuances of its 3-D structure. A final verdict requires further observations using the Herschel Space Observatory, to be launched this year by the European Space Agency.

Dr Loretta Dunne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>