Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust factory in a dead star

27.02.2009
Interstellar space dust from a dead star identified by a research team led by The University of Nottingham could unlock some of the mysteries of the early universe.

Dr Loretta Dunne and her team have found new evidence of huge dust production in the Cassiopeia A supernova remnant, the remains of a star that exploded about 300 years ago. The paper is set to be published in the Monthly Notices of the Royal Astronomical Society.

Interstellar dust is found throughout the cosmos. It is responsible for the dark patches seen in the Milky Way on a moonless night. It consists of carbon and silicate particles, about the size of those in cigarette smoke. The dust helps stars like the Sun to form and subsequently coagulates to form planets like Earth and the cores of giant gas planets like Jupiter. It is found in huge quantities in galaxies, even very early in the history of the universe.

But the origin of all this dust is a mystery. Does it condense like snowflakes in the winds of red giant stars or is it produced in supernovae — the violent death-throes of massive stars? Supernovae are an efficient way of producing dust in a blink of the cosmic eye, as massive stars evolve relatively quickly, taking a few million years to reach their supernova stage. In contrast lower-mass stars like our Sun take billions of years to reach their dust-forming red giant phase. Despite many decades of research, astronomers have still not found conclusive evidence that supernovae can produce dust in the quantities required to account for the dust they see in the early universe.

Using the SCUBA polarimeter on the James Clerk Maxwell Telescope in Hawaii, the scientists searched for a signal from dust grains spinning in the strong magnetic field of the supernova remnant. If the dust grains are slightly elongated (like little cigars) they tend to line up the same way and produce a polarised signal. When the polarimeter detector is rotated, the strength of the signal changes — much the same as if you look at the sky with polaroid sunglasses, held at different angles.

The polarisation signal from the supernova dust is the strongest ever measured anywhere in the Milky Way, marking it out as unusual. It emits more radiation per gram than regular interstellar dust and the alignment of the grains must be very orderly to produce such highly polarised emission.

“It is like nothing we’ve ever seen” said Dr Dunne, who is based in the Centre for Astronomy and Particle Physics at The University of Nottingham. “It could be that the extreme conditions inside the supernova remnant are responsible for the strong polarised signal, or it could be that the dust grains themselves are highly unusual”

Team member Professor Rob Ivison of the UK Astronomy Technology Centre at the Institute for Astronomy, University of Edinburgh comments further. “It could be that the material we're seeing is in the form of iron needles — exotic, slender, metallic whiskers. If these grains are distributed throughout the Universe they may be re-radiating microwaves. This has major consequences for our understanding of the cosmic microwave background — one of the most important building blocks of the Big Bang model of our Universe”.

Alternatively, the grains could be a more pristine version of the dust found elsewhere in the Galaxy, the same composition but able to produce more radiation due to the nuances of its 3-D structure. A final verdict requires further observations using the Herschel Space Observatory, to be launched this year by the European Space Agency.

Dr Loretta Dunne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>