Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dust Disks Survive Cosmic Firework Near Young Massive Stars


Astronomers have discovered dust disks around stars in stellar clusters that recently formed near the center of the Milky Way.

Because these young clusters contain very hot stars that generate energetic, intense Ultraviolet radiation, such dust disks, the sites of planet formation around young stars, were previously thought to be rapidly destroyed.

Galactic Center with the Arches and Quintuplet star clusters. Intense wind and radiation forces of massive stars should mean that dust disks cannot be expected to survive for long.

Image: HST/Spitzer composite: NASA, ESA, D.Q.Wang (UMass), JPL, S. Stolovy (Spitzer Science Center)

The discovery that these disks can survive such hot environments much longer holds new information on when and how planets may have formed, especially billions of years ago when galaxies formed stars at a much higher rate than today and similarly extreme conditions were far more prevalent than in today’s universe.

A study led by Andrea Stolte of the Argelander-Institute of the University of Bonn, Germany, and involving Wolfgang Brandner of the Max Planck Institute for Astronomy in Heidelberg, Germany, has observed young, bright stars in two star clusters, the Arches Cluster and Quintuplet Cluster.

These clusters have formed only a few million years ago, near the center of the Milky Way where intense star birth takes place. They are among the youngest and most massive star clusters in our Galaxy, hosting tens of thousands of recently born stars.

“Our team had previously studied smaller young star clusters in more moderate environments, further outside in our Galaxy’s disk, within the spiral arms, where the UV radiation field is less intense”, Wolfgang Brandner explains. “We had found dust disks around stars in these clusters, and were interested whether such disks could survive the more extreme environments in the hot, dense star clusters near the Galactic Center.

These clusters contain young very massive stars with temperatures around 50,000 degrees Celsius that generate intense, energetic UV radiation. The dust disks around the stars we studied are subject to that hard UV radiation. According to current understanding, the disks should have been evaporated under these conditions within few 100,000 years. The stars in the Quintuplet and Arches Clusters have ages much larger than that, 2.5 and 4 Million years respectively, and yet we discovered more than 20 dust disks around bright stars in each cluster.”

Dust and gas disks around young stars are of special interest as they are the sites where planets and solar systems are formed; our solar system was built from such a disk around the young sun, approximately 4.5 billion years ago. Whether the disks that were now discovered will eventually host planet formation is not clear yet: Brandner remarks that it is hard to tell from the present data whether they contain enough mass.

“We can only see the warm dust in these disks, at moderate distances from the stars, and we can in particular not directly see the gas that must also be there. We do not think that they will host Jupiter-sized planets, but it might be possible for Earth-sized planets to form. It is also a possibility that these massive stars have nearby companion stars that could feed more mass into the disks.”

The fact that the results by Stolte’s team contradict the current theoretical concepts of disk survival makes them particularly interesting. The existence of the gas disks found means that these theories need to be reconsidered. This may well change our understanding of the history of planet formation from the early universe to today:

Billions of years ago, galaxies formed stars at a much higher rate than today, and dense hot environments similar to the clusters near the center of the Milky Way existed over much larger regions within most galaxies. The study of the Arches and Quintuplet clusters therefore delivers clues to when and how planets were formed over the history of the cosmos.

To find these dust disks, the astronomers combined images from the European Southern Observatory’s Very Large Telescope in Chile and from the Earth-orbiting Hubble Space Telescope. The observations had to be performed in the Infrared light, at longer wavelengths than those visible to the human eye. Infrared cameras allow astronomers to look through the copious dust clouds near the center of the Milky Way that block much of the visible light.

A key role in the present study played the Very Large Telescope’s “Adaptive Optics” camera system NAOS/CONICA that delivers very sharp images by compensating for the blurring effect of the Earth’s atmosphere; the Max Planck Institute for Astronomy had led the development of CONICA.

Wolfgang Brandner explains that the Infrared images his group obtained allowed them to look for a tell-tale signature in the light of the stars that is only present once a star is surrounded by a dust disk.

Contact information

Wolfgang Brandner (co-author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 528-289

Andrea Stolte (lead author)
Argelander Institute for Astronomy University of Bonn
Phone:(+49|0) 228 736 790

Kai Noeske (public information officer)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 528-141

Background information

The results described here have been published as A. Stolte et al., "Circumstellar discs in Galactic centre clusters: Disc-bearing B-type stars in the Quintuplet and Arches clusters” in Astronomy & Astrophysics. DOI: 10.1051/0004-6361/201424132

Weitere Informationen: - Web version of the press release

Dr. Kai Noeske | Max-Planck-Institut für Astronomie

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>