Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust Disks Survive Cosmic Firework Near Young Massive Stars

10.03.2015

Astronomers have discovered dust disks around stars in stellar clusters that recently formed near the center of the Milky Way.

Because these young clusters contain very hot stars that generate energetic, intense Ultraviolet radiation, such dust disks, the sites of planet formation around young stars, were previously thought to be rapidly destroyed.


Galactic Center with the Arches and Quintuplet star clusters. Intense wind and radiation forces of massive stars should mean that dust disks cannot be expected to survive for long.

Image: HST/Spitzer composite: NASA, ESA, D.Q.Wang (UMass), JPL, S. Stolovy (Spitzer Science Center)

The discovery that these disks can survive such hot environments much longer holds new information on when and how planets may have formed, especially billions of years ago when galaxies formed stars at a much higher rate than today and similarly extreme conditions were far more prevalent than in today’s universe.

A study led by Andrea Stolte of the Argelander-Institute of the University of Bonn, Germany, and involving Wolfgang Brandner of the Max Planck Institute for Astronomy in Heidelberg, Germany, has observed young, bright stars in two star clusters, the Arches Cluster and Quintuplet Cluster.

These clusters have formed only a few million years ago, near the center of the Milky Way where intense star birth takes place. They are among the youngest and most massive star clusters in our Galaxy, hosting tens of thousands of recently born stars.

“Our team had previously studied smaller young star clusters in more moderate environments, further outside in our Galaxy’s disk, within the spiral arms, where the UV radiation field is less intense”, Wolfgang Brandner explains. “We had found dust disks around stars in these clusters, and were interested whether such disks could survive the more extreme environments in the hot, dense star clusters near the Galactic Center.

These clusters contain young very massive stars with temperatures around 50,000 degrees Celsius that generate intense, energetic UV radiation. The dust disks around the stars we studied are subject to that hard UV radiation. According to current understanding, the disks should have been evaporated under these conditions within few 100,000 years. The stars in the Quintuplet and Arches Clusters have ages much larger than that, 2.5 and 4 Million years respectively, and yet we discovered more than 20 dust disks around bright stars in each cluster.”

Dust and gas disks around young stars are of special interest as they are the sites where planets and solar systems are formed; our solar system was built from such a disk around the young sun, approximately 4.5 billion years ago. Whether the disks that were now discovered will eventually host planet formation is not clear yet: Brandner remarks that it is hard to tell from the present data whether they contain enough mass.

“We can only see the warm dust in these disks, at moderate distances from the stars, and we can in particular not directly see the gas that must also be there. We do not think that they will host Jupiter-sized planets, but it might be possible for Earth-sized planets to form. It is also a possibility that these massive stars have nearby companion stars that could feed more mass into the disks.”

The fact that the results by Stolte’s team contradict the current theoretical concepts of disk survival makes them particularly interesting. The existence of the gas disks found means that these theories need to be reconsidered. This may well change our understanding of the history of planet formation from the early universe to today:

Billions of years ago, galaxies formed stars at a much higher rate than today, and dense hot environments similar to the clusters near the center of the Milky Way existed over much larger regions within most galaxies. The study of the Arches and Quintuplet clusters therefore delivers clues to when and how planets were formed over the history of the cosmos.

To find these dust disks, the astronomers combined images from the European Southern Observatory’s Very Large Telescope in Chile and from the Earth-orbiting Hubble Space Telescope. The observations had to be performed in the Infrared light, at longer wavelengths than those visible to the human eye. Infrared cameras allow astronomers to look through the copious dust clouds near the center of the Milky Way that block much of the visible light.

A key role in the present study played the Very Large Telescope’s “Adaptive Optics” camera system NAOS/CONICA that delivers very sharp images by compensating for the blurring effect of the Earth’s atmosphere; the Max Planck Institute for Astronomy had led the development of CONICA.

Wolfgang Brandner explains that the Infrared images his group obtained allowed them to look for a tell-tale signature in the light of the stars that is only present once a star is surrounded by a dust disk.

Contact information

Wolfgang Brandner (co-author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 528-289
Email: brandner@mpia.de

Andrea Stolte (lead author)
Argelander Institute for Astronomy University of Bonn
Phone:(+49|0) 228 736 790
Email: astolte@astro.uni-bonn.de

Kai Noeske (public information officer)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 528-141
Email: noeske@mpia.de

Background information

The results described here have been published as A. Stolte et al., "Circumstellar discs in Galactic centre clusters: Disc-bearing B-type stars in the Quintuplet and Arches clusters” in Astronomy & Astrophysics. DOI: 10.1051/0004-6361/201424132

Weitere Informationen:

http://www.mpia.de/news/science/2015-02-dust-disks - Web version of the press release

Dr. Kai Noeske | Max-Planck-Institut für Astronomie

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>