Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dunes on Titan need firm winds to move, experiments at ASU show

09.12.2014

Saturn's largest moon, Titan, is one of the few solar system bodies – and the only planetary moon – known to have fields of wind-blown dunes on its surface. (The others are Venus, Earth and Mars.)

New research, using experimental results from the high-pressure wind tunnel at Arizona State University's Planetary Aeolian Laboratory, has found that previous estimates of how fast winds need to blow to move sand-size particles around on Titan are about 40 percent too low.


Lines of dunes crawl across the surface of Titan, Saturn's largest moon, in a radar image showing dunes as dark. Experiments at ASU's wind tunnel indicate the dune particles move only under winds that blow stronger than scientists previously thought.

Photo by: NASA/JPL-Caltech/ASI

A team of scientists led by Devon Burr of the University of Tennessee, Knoxville reported the findings Dec. 8 in a paper published in the journal Nature. James K. Smith, engineer and manager of ASU's Planetary Aeolian Laboratory, is one of the paper's co-authors.

Saturn and Titan orbit about ten times farther from the sun than Earth. Scientists got their first detailed information about Titan when the Cassini/Huygens orbiter and lander arrived in 2004. The short-lived Huygens lander took photos when it reached the surface and as it was descending through Titan's dense, smoggy atmosphere, which has 1.4 times greater pressure than Earth's. These images, plus studies using instruments on the Cassini orbiter, revealed that Titan's geological features include mountains, craters, river channels, lakes of ethane, methane and propane – and dunes.

Dunes begin to form when the wind picks up loose particles from the ground and drives them to hop, or saltate, downwind. A key part of understanding dunes is to identify the threshold wind speed that causes dune particles to start to move. Geologists have found threshold speeds for sand and dust under various conditions on Earth, Mars and Venus. But for Titan, with its bizarre conditions, this remained unknown.

Particles of 'sand' as light as freeze-dried coffee

On Titan, where the surface temperature is negative 290 degrees Fahrenheit, even "sand" is probably unlike sand on Earth, Mars or Venus. From the Cassini observations and other data, scientists think it is composed of small particles of solid hydrocarbons (or ice wrapped in hydrocarbons), with a density about one-third that of terrestrial sand. In addition, Titan's gravity is low, roughly one-seventh that on Earth. Combined with the particles' low density, this gives them a weight of only about four percent that of terrestrial sand, or roughly as light as freeze-dried coffee grains.

The scientists led by Burr began their study with carefully designed wind tunnel experiments. "We refurbished the high-pressure wind tunnel previously used to study conditions on Venus," Smith explains. To recreate in the tunnel on Earth the wind conditions on Titan, the scientists had to increase the air pressure in the wind tunnel to about 12 times the surface pressure of Earth. And they compensated for the low density of Titan "sand" and the moon's reduced gravity through numerical modeling.

In the end, the Burr team explains, "This simulation reproduces the fundamental physics governing particle motion thresholds on Titan." They add that previous studies, which had extrapolated from wind tunnel experiments designed to mimic conditions on Earth and Mars, produced results that were questionable under Titan's conditions.

The outcome of the wind tunnel experiments show that the previous calculations for wind speeds necessary to lift particles were about 40 to 50 percent too slow. The new experiments show that near the surface of Titan, the most easily moved sand-size particles need winds of at least 3.2 miles per hour (1.4 meters per second) to start moving.

That doesn't sound like much, says Nathan Bridges of the Johns Hopkins University Applied Physics Laboratory, one of the co-authors, "but it makes more sense when you realize this is a dense atmosphere blowing against particles that are very light."

A higher threshold wind speed for making particles move creates an either/or situation in which weak, everyday winds do little or nothing to surface particles, but occasional strong ones readily blow them around and reshape the dunes. The pattern of dunes on Titan shows that despite prevailing winds blowing from the east, the dunes appear shaped by winds from the west, which occur more rarely. Thus, the new work indicates that Titan's dunes are seldom stirred into motion – only whenever conditions produce strong westerly winds.

For simplicity, the wind-tunnel modeling ignored some factors, among them whether Titan dune particles are sticky. If they are, the paper's scientists note, then it will take yet-stronger winds to get the particles moving, and the contrasts will be even greater between the normal east wind pattern and the stronger west winds that shape the dunes.

Bridges says, "Titan is a strange place indeed."

The facility that has grown to become ASU's Planetary Aeolian Laboratory was founded in the mid-1970s by the late Ronald Greeley of ASU. The laboratory, located at NASA's Ames Research Center in Mountain View, California, has been used for many studies of how wind interacts with particles of sand, dust and rock. Scientists have also used it to investigate what blowing sand and dust do to Mars spacecraft, such as NASA's Opportunity and Curiosity rovers. ASU operates the laboratory through an agreement with NASA.

The School of Earth and Space Exploration is an academic unit of ASU's College of Liberal Arts and Sciences.


Robert Burnham, robert.burnham@asu.edu

(480) 458-8207

Mars Space Flight Facility

Robert Burnham | EurekAlert!
Further information:
https://asunews.asu.edu/20141208-titan-winds

Further reports about: Arizona Dunes Mars Planetary Space Titan conditions threshold wind speed wind tunnel winds

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>