Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dramatic new portrait helps define Milky Way's shape, contents

21.03.2014

Using more than 2 million images collected by NASA's orbiting Spitzer Space Telescope, a team of Wisconsin scientists has stitched together a dramatic 360 degree portrait of the Milky Way, providing new details of our galaxy's structure and contents.

The new composite picture (viewable at http://www.spitzer.caltech.edu/

GLIMPSE360

More than 200 million images like this one have been stitched together by Wisconsin astronomers to make a 360-degree portrait of the plane of our galaxy, the Milky Way. In this image, the billowing pink clouds are massive stellar nurseries. The stringy green filaments are the blown out remnants of a star that exploded in a supernova.

Credit: NASA/JPL-Caltech/University of Wisconsin-Madison

glimpse360), using infrared images gathered over the last decade, was unveiled today (March 20, 2014) at a TED conference in Vancouver. The galactic portrait provides an unprecedented look at the plane of our galaxy, using the infrared imagers aboard Spitzer to cut through the interstellar dust that obscures the view in visible light.

"For the first time, we can actually measure the large-scale structure of the galaxy using stars rather than gas," explains Edward Churchwell, a University of Wisconsin-Madison professor of astronomy whose group compiled the new picture, which looks at a thin slice of the galactic plane. "We've established beyond the shadow of a doubt that our galaxy has a large bar structure that extends halfway out to the sun's orbit. We know more about where the Milky Way's spiral arms are."

Lofted into space in 2003, the Spitzer Space Telescope has far exceeded its planned two-and-a-half-year lifespan. Although limited by the depletion of the liquid helium used to cool its cameras, the telescope remains in heliocentric orbit, gathering a trove of astrophysical data that promises to occupy a new generation of astronomers.

In addition to providing new revelations about galactic structure, the telescope and the images processed by the Wisconsin team have made possible the addition of more than 200 million new objects to the catalog of the Milky Way.

"This gives us some idea about the general distribution of stars in our galaxy, and stars, of course, make up a major component of the baryonic mass of the Milky Way," notes Churchwell, whose group has been collecting and analyzing Spitzer data for more than a decade in a project known as GLIMPSE (Galactic Legacy Infrared Midplane Survey Extraordinaire). "That's where the ballgame is."

The new infrared picture, known as GLIMPSE360, was compiled by a team led by UW-Madison astronomer Barb Whitney. It is interactive and zoomable, giving users the ability to look through the plane of the galaxy and zero in on a variety of objects, including nebulae, bubbles, jets, bow shocks, the center of the galaxy and other exotic phenomena. The image is being shown for the first time this morning on a large visualization wall installed by Microsoft at the TED conference.

The survey conducted by the Wisconsin group has also helped astronomers understand the distribution of the Milky Way's stellar nurseries, regions where massive stars and proto-stars are churned out.

"We can see every star-forming region in the plane of the galaxy," says Robert Benjamin, a professor of physics at the University of Wisconsin-Whitewater and a member of the GLIMPSE team.

"This gives us some idea of the metabolic rate of our galaxy," explains Whitney. "It tells us how many stars are forming each year."

Churchwell notes, too, that while Spitzer is helping astronomers resolve some of the mysteries of the Milky Way, it is adding new cosmological puzzles for scientists to ponder. For example, the infrared data gathered by the GLIMPSE team has revealed that interstellar space is filled with diffuse polycyclic aromatic hydrocarbon gas.

"These are hydrocarbons — very complicated, very heavy molecules with fifty or more carbon atoms," Churchwell says. "They are brightest around regions of star formation but detectable throughout the disk of the Milky Way. They're floating out in the middle of interstellar space where they have no business being. It raises the question of how they were formed. It also tells us carbon may be more abundant than we thought."

The new GLIMPSE composite image will be made widely available to astronomers and planetaria. The data is also the basis for a "citizen science" project, known as the Milky Way Project, where anyone can help scour GLIMPSE images to help identify and map the objects that populate our galaxy.

The data from the survey, Churchwell argues, will keep astronomers busy for many years: "It's still up there. It's still taking data. It's done what we wanted it to do, which is to provide a legacy of data for the astronomical community."

###

—Terry Devitt, 608-262-8282, trdevitt@wisc.edu

Edward Churchwell | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: GLIMPSE addition astronomy contents exotic explains interstellar structure

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>