Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the Dragonfish's mouth: The next generation of superstars to stir up our galaxy

01.12.2011
Three astronomers at the University of Toronto have found the most numerous batch of young, supermassive stars yet observed in our galaxy: hundreds of thousands of stars, including several hundreds of the most massive kind --blue stars dozens of times heavier than our Sun.

The light these newborn stars emit is so intense it has pushed out and heated the gas that gave them birth, carving out a glowing hollow shell about a hundred light-years across.


This is an image of Dragonfish assocation, showing the shell of hot gas. Credit: NASA/JPL Caltech/GLIMPSE Team/Mubdi Rahman

These findings will be published in the December 20 issue of Astrophysical Journal Letters. For the researchers, the next step is already clear: "By studying these supermassive stars and the shell surrounding them, we hope to learn more about how energy is transmitted in such extreme environments," says Mubdi Rahman, a PhD candidate in the Department of Astronomy & Astrophysics at the University of Toronto, who led the work with his supervisors, Professors Dae-Sik Moon and Christopher Matzner.

Such large nurseries of massive stars have been noticed in other galaxies, but were so far away that all stars are often blurred together on images taken by telescopes. "This time, the massive stars are right here in our galaxy, and we can even count them individually," Rahman says. Studying the individual stars will require intricate measurements. The cluster of bright stars is located nearly halfway across our galaxy, 30,000 light-years away, and the line of sight is blocked by dust. "All this dust made it difficult for us to figure out what type of stars they are," Rahman says.

"These stars are incredibly bright," Rahman says, "yet, they're very hard to see." Before the light from these stars can reach us, most of it is absorbed by the intervening dust in our galaxy. This makes the brightest stars in the cluster appear as dim as smaller, nearby stars. The fainter stars in the cluster appear so dim that they are not seen.

The researchers used the New Technology Telescope at the European Southern Observatory in Chile to collect whatever light they could from a few dozen stars. They measured in details how much light the stars emit in each colour, and were finally able to confirm that at least a dozen stars in the cluster were of the most massive kind, some possibly a hundred times more massive than our Sun.

In fact, before turning a ground telescope toward the stars themselves, Rahman first noticed the glow from the large shell of heated gas using the WMAP satellite, which is sensitive to microwaves (between radio waves and visible light). To make an image of the gas shell being blown away and heated up, the researchers used the Spitzer satellite, which works with infrared light (between microwave and visible light).

Rahman suggested the name "Dragonfish" after comparing the infrared image of the celestial gas shell with Peter Shearer's illustration of the deep-sea creature with the same name. The astronomical image resembles a dark gaping mouth-like shape with teeth, two eyes, and a bright fin to the right. The "mouth" is the volume from which the gas has been cleared by the light of the stars, pushed outward to form a shell that is particularly bright in spots corresponding to the eyes and the fin of the animal.

"We were able to see the effect of the stars on their surroundings before seeing the stars directly", Rahman says. This would be like seeing lit faces and red cheeks from the heat of a campfire, without being able to see the logs and flames themselves.

In the same way that red embers are cooler than the blue flame of a welding torch, the gas is cooler than what is heating it, and thus glows redder than the blue stars. Compared to the colours of a rainbow ranging from red to blue, most of the light emitted by the heated gas is in fact redder than red, and thus infrared --less affected by gas or dust, and invisible to our naked eyes, but not to appropriate telescope instruments. At the other end of the rainbow, the giant stars in the cluster are bluer than blue, and emit mostly in the ultraviolet, which is blocked by dust and thus not visible on the image.

"But we had to make sure what was at the heart of the shell," Rahman says. Now that the astronomers have identified several stars there as very massive, they know that these stars will burn their nuclear fuel relatively quickly in astronomical terms: within a few million years (thousands of times faster than for our Sun) even though the giant blue stars contain dozens of times more fuel than our Sun.

"Still, if you thought the inside of the shell was empty, think again," Rahman says. For each of the few hundred superstars the researchers may have spotted, there are thousands of average stars more akin to our Sun. When the superstars have burned through their fuel, they will explode and release metals and other heavy atoms that may help form rocky planets around smaller, quieter stars --perhaps providing the building blocks for life.

"There may be newer stars already forming in the eyes of the Dragonfish," Rahman says. Some areas in the shell glow particularly bright, and the researchers think the gas there may have been compressed enough to ignite even more stars.

The gas now in the shell is the remainder of the very gas that gave birth to the stars, and there is a lot of it: the mother shell is more massive than the cluster of its babies. But with no mother anymore to keep them reined in via its mass and gravity, all the young stars may start wandering off in all directions. "We've found a rebel in the group, a runaway star escaping from the group at high speed," Rahman says. "We think the group is no longer tied together by gravity: however, how the association will fly apart is somethie still don't understand well."

ADDITIONAL MEDIA:

A high-resolution infrared image of Dragonfish association, showing the shell of hot gas, can be found at: http://dl.dropbox.com/u/34618436/Images/Dragonfish_Association_Rahman.jpg This image can be reused freely, provided the following credits are displayed clearly: NASA/JPL-Caltech/GLIMPSE Team/Mubdi Rahman

The high-resolution illustration of the animal, created by Peter Shearer after digitally altering his photo of a dead Black Dragonfish (with left and right flipped for convenience), can be downloaded from: http://dl.dropbox.com/u/34618436/Images/Dragonfish_Shearer_Flipped.jpg This image can be reused freely, provided the following credits are displayed clearly: Peter Shearer, http://www.petershearer.co.nz

The online version of the scientific paper can be downloaded from: http://iopscience.iop.org/2041-8205/743/2/L28

CONTACT INFORMATION:

Mubdi Rahman
Department of Astronomy & Astrophysics, University of Toronto
416-893-7641
rahman@astro.utoronto.ca
Prof. Dae-Sik Moon
Department of Astronomy & Astrophysics, University of Toronto
416-978-6566
moon@astro.utoronto.ca
Prof. Christopher Matzner
Department of Astronomy & Astrophysics, University of Toronto
416-978-2172
matzner@astro.utoronto.ca
Johannes Hirn, PhD
Communications, Dunlap Institute for Astronomy & Astrophysics, University of Toronto
416-525-6329
hirn@di.utoronto.ca

Johannes Hirn | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>