Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the Dragonfish's mouth: The next generation of superstars to stir up our galaxy

01.12.2011
Three astronomers at the University of Toronto have found the most numerous batch of young, supermassive stars yet observed in our galaxy: hundreds of thousands of stars, including several hundreds of the most massive kind --blue stars dozens of times heavier than our Sun.

The light these newborn stars emit is so intense it has pushed out and heated the gas that gave them birth, carving out a glowing hollow shell about a hundred light-years across.


This is an image of Dragonfish assocation, showing the shell of hot gas. Credit: NASA/JPL Caltech/GLIMPSE Team/Mubdi Rahman

These findings will be published in the December 20 issue of Astrophysical Journal Letters. For the researchers, the next step is already clear: "By studying these supermassive stars and the shell surrounding them, we hope to learn more about how energy is transmitted in such extreme environments," says Mubdi Rahman, a PhD candidate in the Department of Astronomy & Astrophysics at the University of Toronto, who led the work with his supervisors, Professors Dae-Sik Moon and Christopher Matzner.

Such large nurseries of massive stars have been noticed in other galaxies, but were so far away that all stars are often blurred together on images taken by telescopes. "This time, the massive stars are right here in our galaxy, and we can even count them individually," Rahman says. Studying the individual stars will require intricate measurements. The cluster of bright stars is located nearly halfway across our galaxy, 30,000 light-years away, and the line of sight is blocked by dust. "All this dust made it difficult for us to figure out what type of stars they are," Rahman says.

"These stars are incredibly bright," Rahman says, "yet, they're very hard to see." Before the light from these stars can reach us, most of it is absorbed by the intervening dust in our galaxy. This makes the brightest stars in the cluster appear as dim as smaller, nearby stars. The fainter stars in the cluster appear so dim that they are not seen.

The researchers used the New Technology Telescope at the European Southern Observatory in Chile to collect whatever light they could from a few dozen stars. They measured in details how much light the stars emit in each colour, and were finally able to confirm that at least a dozen stars in the cluster were of the most massive kind, some possibly a hundred times more massive than our Sun.

In fact, before turning a ground telescope toward the stars themselves, Rahman first noticed the glow from the large shell of heated gas using the WMAP satellite, which is sensitive to microwaves (between radio waves and visible light). To make an image of the gas shell being blown away and heated up, the researchers used the Spitzer satellite, which works with infrared light (between microwave and visible light).

Rahman suggested the name "Dragonfish" after comparing the infrared image of the celestial gas shell with Peter Shearer's illustration of the deep-sea creature with the same name. The astronomical image resembles a dark gaping mouth-like shape with teeth, two eyes, and a bright fin to the right. The "mouth" is the volume from which the gas has been cleared by the light of the stars, pushed outward to form a shell that is particularly bright in spots corresponding to the eyes and the fin of the animal.

"We were able to see the effect of the stars on their surroundings before seeing the stars directly", Rahman says. This would be like seeing lit faces and red cheeks from the heat of a campfire, without being able to see the logs and flames themselves.

In the same way that red embers are cooler than the blue flame of a welding torch, the gas is cooler than what is heating it, and thus glows redder than the blue stars. Compared to the colours of a rainbow ranging from red to blue, most of the light emitted by the heated gas is in fact redder than red, and thus infrared --less affected by gas or dust, and invisible to our naked eyes, but not to appropriate telescope instruments. At the other end of the rainbow, the giant stars in the cluster are bluer than blue, and emit mostly in the ultraviolet, which is blocked by dust and thus not visible on the image.

"But we had to make sure what was at the heart of the shell," Rahman says. Now that the astronomers have identified several stars there as very massive, they know that these stars will burn their nuclear fuel relatively quickly in astronomical terms: within a few million years (thousands of times faster than for our Sun) even though the giant blue stars contain dozens of times more fuel than our Sun.

"Still, if you thought the inside of the shell was empty, think again," Rahman says. For each of the few hundred superstars the researchers may have spotted, there are thousands of average stars more akin to our Sun. When the superstars have burned through their fuel, they will explode and release metals and other heavy atoms that may help form rocky planets around smaller, quieter stars --perhaps providing the building blocks for life.

"There may be newer stars already forming in the eyes of the Dragonfish," Rahman says. Some areas in the shell glow particularly bright, and the researchers think the gas there may have been compressed enough to ignite even more stars.

The gas now in the shell is the remainder of the very gas that gave birth to the stars, and there is a lot of it: the mother shell is more massive than the cluster of its babies. But with no mother anymore to keep them reined in via its mass and gravity, all the young stars may start wandering off in all directions. "We've found a rebel in the group, a runaway star escaping from the group at high speed," Rahman says. "We think the group is no longer tied together by gravity: however, how the association will fly apart is somethie still don't understand well."

ADDITIONAL MEDIA:

A high-resolution infrared image of Dragonfish association, showing the shell of hot gas, can be found at: http://dl.dropbox.com/u/34618436/Images/Dragonfish_Association_Rahman.jpg This image can be reused freely, provided the following credits are displayed clearly: NASA/JPL-Caltech/GLIMPSE Team/Mubdi Rahman

The high-resolution illustration of the animal, created by Peter Shearer after digitally altering his photo of a dead Black Dragonfish (with left and right flipped for convenience), can be downloaded from: http://dl.dropbox.com/u/34618436/Images/Dragonfish_Shearer_Flipped.jpg This image can be reused freely, provided the following credits are displayed clearly: Peter Shearer, http://www.petershearer.co.nz

The online version of the scientific paper can be downloaded from: http://iopscience.iop.org/2041-8205/743/2/L28

CONTACT INFORMATION:

Mubdi Rahman
Department of Astronomy & Astrophysics, University of Toronto
416-893-7641
rahman@astro.utoronto.ca
Prof. Dae-Sik Moon
Department of Astronomy & Astrophysics, University of Toronto
416-978-6566
moon@astro.utoronto.ca
Prof. Christopher Matzner
Department of Astronomy & Astrophysics, University of Toronto
416-978-2172
matzner@astro.utoronto.ca
Johannes Hirn, PhD
Communications, Dunlap Institute for Astronomy & Astrophysics, University of Toronto
416-525-6329
hirn@di.utoronto.ca

Johannes Hirn | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>