Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doppler effect found even at molecular level – 169 years after its discovery

11.05.2011
Whether they know it or not, anyone who's ever gotten a speeding ticket after zooming by a radar gun has experienced the Doppler effect – a measurable shift in the frequency of radiation based on the motion of an object, which in this case is your car doing 45 miles an hour in a 30-mph zone.

But for the first time, scientists have experimentally shown a different version of the Doppler effect at a much, much smaller level – the rotation of an individual molecule. Prior to this such an effect had been theorized, but it took a complex experiment with a synchrotron to prove it's for real.

"Some of us thought of this some time ago, but it's very difficult to show experimentally," said T. Darrah Thomas, a professor emeritus of chemistry at Oregon State University and part of an international research team that today announced its findings in Physical Review Letters, a professional journal.

Most illustrations of the Doppler effect are called "translational," meaning the change in frequency of light or sound when one object moves away from the other in a straight line, like a car passing a radar gun. The basic concept has been understood since an Austrian physicist named Christian Doppler first proposed it in 1842.

But a similar effect can be observed when something rotates as well, scientists say.

"There is plenty of evidence of the rotational Doppler effect in large bodies, such as a spinning planet or galaxy," Thomas said. "When a planet rotates, the light coming from it shifts to higher frequency on the side spinning toward you and a lower frequency on the side spinning away from you. But this same basic force is at work even on the molecular level."

In astrophysics, this rotational Doppler effect has been used to determine the rotational velocity of things such as planets. But in the new study, scientists from Japan, Sweden, France and the United States provided the first experimental proof that the same thing happens even with molecules.

At this tiny level, they found, the rotational Doppler effect can be even more important than the linear motion of the molecules, the study showed.

The findings are expected to have application in a better understanding of molecular spectroscopy, in which the radiation emitted from molecules is used to study their makeup and chemical properties. It is also relevant to the study of high energy electrons, Thomas said.

"There are some studies where a better understanding of this rotational Doppler effect will be important," Thomas said. "Mostly it's just interesting. We've known about the Doppler effect for a very long time but until now have never been able to see the rotational Doppler effect in molecules."

Darrah Thomas | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>