Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Certain Doped-Oxide Ceramics Resist Ohm's Law

22.09.2010
For months, Anthony West could hardly believe what he and his colleagues were seeing in the lab -- or the only explanation for the unexpected phenomena that seemed to make sense.

Several of the slightly doped high-purity barium titanate (BT) ceramics his research group was investigating were not following the venerable Ohm's Law, which relates electrical voltage to current and resistance. Applying or removing a voltage caused a gradual change in the materials' electrical resistance. The new effect was seen consistently regardless of the temperature or whether the experiments were conducted in vacuum, air, or in an oxygen atmosphere. The time to stabilize and the final, steady-state resistance were, however, both temperature-dependent.

"I was not immediately convinced myself about the non-Ohm's Law behavior," said West, Professor of Electroceramics and Solid State Chemistry at the University of Sheffield in England. "Interfacial effects are well known for their non-Ohmic behavior. We needed to be really convinced that our results were not influenced in some way by interfacial effects."

West's proposed mechanism for the non-Ohm behavior is also unconventional: the ionization of only one of the two extra electrons from oxygen atoms that are attached to dopant atoms. This process leaves behind a positively charged "hole" that can move fairly readily in what is called a hole current. West and his colleagues at Sheffield and the Universidat Jaume 1 in Castellon, Spain, described their latest experiments with calcium-doped BT in the journal Applied Physics Letters, which is published by the American Institute of Physics. Similar results with zinc and magnesium dopants were published earlier this year in other technical journals. Calcium, zinc and magnesium are known as "acceptor" dopants, which can promote hole currents.

Undoped BT and "donor"-doped materials did not exhibit this unusual behavior. West believes that these results may ultimately lead to a better understanding of how ceramics used in electrical circuits degrade and may possibly even stimulate new insights into high-temperature superconductivity mechanisms in oxide ceramics.

The article, "Field enhanced bulk conductivity of acceptor-doped BaTi1-xCaxO3-x ceramics" by Nahum Maso, Marta Prades, Hector Beltran, Eloisa Cordoncillo, Derek C. Sinclair, and Anthony R. West appears in the journal Applied Physics Letters. See: http://link.aip.org/link/applab/v97/i6/p062907/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT APPLIED PHYSICS LETTERS
Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>