Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Domain walls in nanowires cleverly set in motion

08.04.2014

Important prerequisite for the development of nano-components for data storage and sensor technology / Publication in Nature Communications

Researchers at Johannes Gutenberg University Mainz (JGU) have achieved a major breakthrough in the development of methods of information processing in nanomagnets. Using a new trick, they have been able to induce synchronous motion of the domain walls in a ferromagnetic nanowire.


Kläui-Lab, Institute of Physics

Illustration of synchronous displacement of several domain walls over larger distances by means of customized perpendicular field pulses

This involved applying a pulsed magnetic field that was perpendicular to the plane of the domain walls. "This is a radically new solution," explained Professor Mathias Kläui of the Institute of Physics of Johannes Gutenberg University Mainz. "It enables us to move domain walls synchronously over a relatively large distance without them returning to their original position."

This is essential for permanent data storage, because data would otherwise be lost if domain walls were not collectively displaced in a controlled manner. The research was carried out in cooperation with the working groups of Professor Stefan Eisebitt at TU Berlin and Professor Gisela Schütz of the Max Planck Institute for Intelligent Systems in Stuttgart. The results were published in the journal Nature Communications at the end of March.

... more about:
»BESSY II »Nanomagnets »Nature »Physics »nanowire »walls

Magnetic nanowires have small regions of uniform magnetization called domains, which can be used as storage units (bits). The site where domains of different alignment meet each other is called a domain wall. Information can be stored in the domain, and read and processed by means of the movement of the domain walls.

The method has the great advantage that the information – as in the case of magnetic data storage in general – cannot be easily lost. This contrasts with semiconductor-based storage systems, such as RAM in PCs, which lose all stored information without power. In addition, no fragile moving parts are required such as the read/write head of a hard disk.

It has not previously proved possible to induce the required controlled and synchronized movement of multiple domain walls using magnetic fields. The most obvious approach would be to apply a magnetic field in the direction in which the magnetization runs in the tiny nanowires. However, this has been shown to be ineffective, as there is loss of data. Mathias Kläui and his group took a radically new path.

They decided to apply a pulsed magnetic field perpendicularly to the in-plane magnetized domain walls. As the Mainz researchers found in their model system, it is possible to customize the asymmetric field pulses that provide the forward- and backward-oriented forces that act on domain walls. Data can thus be moved within the storage medium in a controlled manner.

The participating physicists at Mainz University first tried out their concept in the context of micromagnetic simulations and then tested it experimentally. For this purpose, they recorded images of the magnetic arrangement in the tiny nanowires with the help of the electron storage ring BESSY II of the Helmholtz Center Berlin for Materials and Energy (HZB).

As expected from the simulation, they observed displacement of the domain walls in a direction that was consistent with the model. The scientists also calculated the energy that would be necessary for the experimentally observed domain wall motion and came to the conclusion that the energy consumption of the proposed system would be quite cost-effective compared with the best components currently available.

"The results are very promising. We assume that the necessary paradigm shift will be facilitated by this new approach and it will prove possible to develop a method of efficient and controlled synchronous motion of the domain walls in nanowires," said Kläui. This would pave the way for the development of non-volatile spintronic components of the next generation, which could be used in a wide range of applications for data storage as well as logic and sensor modules.

Publication:
June-Seo Kim et al.
Synchronous precessional motion of multiple domain walls in a ferromagnetic nanowire by perpendicular field pulses
Nature Communications, 24 March 2014
DOI: 10.1038/ncomms4429

Further information:
Prof. Dr. Mathias Kläui
Kläui-Lab
Theory of Condensed Matter
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/

Weitere Informationen:

http://www.uni-mainz.de/presse/17186_ENG_HTML.php - press release ;
http://www.nature.com/ncomms/2014/140324/ncomms4429/full/ncomms4429.html - publication

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: BESSY II Nanomagnets Nature Physics nanowire walls

More articles from Physics and Astronomy:

nachricht Australian technology installed on world’s largest single-dish radio telescope
26.09.2016 | International Centre for Radio Astronomy Research (ICRAR)

nachricht How to merge two black holes in a simple way
26.09.2016 | Plataforma SINC

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>