Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doing More with Less: New Technique Uses Fraction of Measurements to Efficiently Find Quantum Wave Functions

01.09.2014

The result of every possible measurement on a quantum system is coded in its wave function, which until recently could be found only by taking many different measurements of a system and estimating a wave function that best fit all those measurements.

Just two years ago, with the advent of a technique called direct measurement, scientists discovered they could reliably determine a system’s wave function by “weakly” measuring one of its variables (e.g. position) and “strongly” measuring a complementary variable (momentum). Researchers at the University of Rochester have now taken this method one step forward by combining direct measurement with an efficient computational technique.

The new method, called compressive direct measurement, allowed the team to reconstruct a quantum state at 90 percent fidelity (a measure of accuracy) using only a quarter of the measurements required by previous methods.

“We have, for the first time, combined weak measurement and compressive sensing to demonstrate a revolutionary, fast method for measuring a high-dimensional quantum state,” said Mohammad Mirhosseini, a graduate student in the Quantum Photonics research group at the University of Rochester and lead author of a paper appearing today in Physical Review Letters.

The research team, which also included graduate students Omar Magaña-Loaiza and Seyed Mohammad Hashemi Rafsanjani, and Professor Robert Boyd, initially tested their method on a 192-dimensional state. Finding success with that large state, they then took on a massive, 19,200-dimensional state. Their efficient technique sped up the process 350-fold and took just 20 percent of the total measurements required by traditional direct measurement to reconstruct the state.

“To reproduce our result using a direct measurement alone would require more than one year of exposure time,” said Rafsanjani. “We did the experiment in less than 48 hours.”

While recent compressive sensing techniques have been used to measure sets of complementary variables like position and momentum, Mirhosseini explains that their method allows them to measure the full wave function.

Compression is widely used in the classical world of digital media, including recorded music, video, and pictures. The MP3s on your phone, for example, are audio files that have had bits of information squeezed out to make the file smaller at the cost of losing a small amount of audio quality along the way.

In digital cameras, the more pixels you can gather from a scene, the higher the image quality and the larger the file will be. But it turns out that most of those pixels don’t convey essential information that needs to be captured from the scene. Most of them can be reconstructed later. Compressive sensing works by randomly sampling portions from all over the scene, and using those patterns to fill in the missing information.

Similarly for quantum states, it is not necessary to measure every single dimension of a multidimensional state. It takes only a handful of measurements to get a high-quality image of a quantum system.

The method introduced by Mirhosseini et al. has important potential applications in the field of quantum information science. This research field strives to make use of fundamental quantum effects for diverse applications, including secure communication, teleportation of quantum states, and ideally to perform quantum computation. This latter process holds great promise as a method that can, in principle, lead to a drastic speed-up of certain types of computation. All of these applications require the use of complicated quantum states, and the new method described here offers an efficient means to characterize these states.

Research funding was provided by the Defense Advanced Research Projects Agency’s (DARPA) Information in a Photon (InPho) program, U.S. Defense Threat Reduction Agency (DTRA), National Science Foundation (NSF), El Consejo Nacional de Ciencia y Tecnología (CONACYT) and Canadian Excellence Research Chair (CERC).

Contact Information

Peter Iglinski
Senior Press Officer, Science & Public Media
peter.iglinski@rochester.edu
Phone: 585-273-4726
Mobile: 585-764-7002

Peter Iglinski | newswise
Further information:
http://www.rochester.edu

Further reports about: DTRA Defense Functions Quantum Wave high-dimensional quantum state measurement measurements

More articles from Physics and Astronomy:

nachricht Knots in chaotic waves
29.07.2016 | University of Bristol

nachricht International team of scientists unveils fundamental properties of spin Seebeck effect
29.07.2016 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>