Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doing More with Less: New Technique Uses Fraction of Measurements to Efficiently Find Quantum Wave Functions

01.09.2014

The result of every possible measurement on a quantum system is coded in its wave function, which until recently could be found only by taking many different measurements of a system and estimating a wave function that best fit all those measurements.

Just two years ago, with the advent of a technique called direct measurement, scientists discovered they could reliably determine a system’s wave function by “weakly” measuring one of its variables (e.g. position) and “strongly” measuring a complementary variable (momentum). Researchers at the University of Rochester have now taken this method one step forward by combining direct measurement with an efficient computational technique.

The new method, called compressive direct measurement, allowed the team to reconstruct a quantum state at 90 percent fidelity (a measure of accuracy) using only a quarter of the measurements required by previous methods.

“We have, for the first time, combined weak measurement and compressive sensing to demonstrate a revolutionary, fast method for measuring a high-dimensional quantum state,” said Mohammad Mirhosseini, a graduate student in the Quantum Photonics research group at the University of Rochester and lead author of a paper appearing today in Physical Review Letters.

The research team, which also included graduate students Omar Magaña-Loaiza and Seyed Mohammad Hashemi Rafsanjani, and Professor Robert Boyd, initially tested their method on a 192-dimensional state. Finding success with that large state, they then took on a massive, 19,200-dimensional state. Their efficient technique sped up the process 350-fold and took just 20 percent of the total measurements required by traditional direct measurement to reconstruct the state.

“To reproduce our result using a direct measurement alone would require more than one year of exposure time,” said Rafsanjani. “We did the experiment in less than 48 hours.”

While recent compressive sensing techniques have been used to measure sets of complementary variables like position and momentum, Mirhosseini explains that their method allows them to measure the full wave function.

Compression is widely used in the classical world of digital media, including recorded music, video, and pictures. The MP3s on your phone, for example, are audio files that have had bits of information squeezed out to make the file smaller at the cost of losing a small amount of audio quality along the way.

In digital cameras, the more pixels you can gather from a scene, the higher the image quality and the larger the file will be. But it turns out that most of those pixels don’t convey essential information that needs to be captured from the scene. Most of them can be reconstructed later. Compressive sensing works by randomly sampling portions from all over the scene, and using those patterns to fill in the missing information.

Similarly for quantum states, it is not necessary to measure every single dimension of a multidimensional state. It takes only a handful of measurements to get a high-quality image of a quantum system.

The method introduced by Mirhosseini et al. has important potential applications in the field of quantum information science. This research field strives to make use of fundamental quantum effects for diverse applications, including secure communication, teleportation of quantum states, and ideally to perform quantum computation. This latter process holds great promise as a method that can, in principle, lead to a drastic speed-up of certain types of computation. All of these applications require the use of complicated quantum states, and the new method described here offers an efficient means to characterize these states.

Research funding was provided by the Defense Advanced Research Projects Agency’s (DARPA) Information in a Photon (InPho) program, U.S. Defense Threat Reduction Agency (DTRA), National Science Foundation (NSF), El Consejo Nacional de Ciencia y Tecnología (CONACYT) and Canadian Excellence Research Chair (CERC).

Contact Information

Peter Iglinski
Senior Press Officer, Science & Public Media
peter.iglinski@rochester.edu
Phone: 585-273-4726
Mobile: 585-764-7002

Peter Iglinski | newswise
Further information:
http://www.rochester.edu

Further reports about: DTRA Defense Functions Quantum Wave high-dimensional quantum state measurement measurements

More articles from Physics and Astronomy:

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>