Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doing more with less; in cellulo structure determinations

03.06.2014

Anyone involved in macromolecular crystallography will know that for many years scientists have had to rely on a multi-stage process utilizing protein, usually expressed in engineered cells, which is then extracted and purified before crystallization in vitro and finally prepared for analysis.

As a counter to this time-consuming and substantial scientific effort, there are a number of examples of protein crystallization events occurring in vivo, with next to no human input. In a case presented in a recent paper an insect virus exploits the phenomenon as part of its life cycle.


Not surprisingly an issue with intracellular protein crystals is that they are typically very small, limited by the size of the cell. However, microfocus beamlines at synchrotron light sources prove here to be capable and refined in the analysis of micron-scale in vivo samples.

A group of scientists from the Diamond Light Source and the University of Oxford, UK [Axford et al. (2014), Acta Cryst. D70, 1435-1441; doi:10.1107/S1399004714004714] has been able to study crystals inside the cells directly using X-ray analysis without complex attempts to extract and prepare samples.

It would not be out of place to assume that the presence of cellular material might compromise the experiment. However, the researchers’ results show that the exact opposite may actually be true; the cell maintains the crystals in an environment amenable to the collection of data. 

It will be interesting to see if an improved understanding of protein crystallization in vivo can bring more targets within reach of such analysis.

Certainly continued technical developments, including increased photon flux and reduced beam size, will improve the signal-to-noise ratio.

Together with more efficient data processing, this means that we will be able to do more with less and exploit novel microcrystal targets of increasing complexity for in vivo structural studies.

Jonathan Agbenyega
Business Development Manager, IUCr

Dr. Jonathan Agbenyega | Eurek Alert!

Further reports about: Crystallography X-ray beamlines collection crystallization crystals inside phenomenon ratio structure

More articles from Physics and Astronomy:

nachricht Quantum States in a Nano-object Manipulated using a Mechanical System
04.08.2015 | Universität Basel

nachricht New Study Reveals Stars in Milky Way Have Moved
03.08.2015 | New Mexico State University (NMSU)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Reliable and extremely long-lasting – high-voltage power electronics for network expansion

04.08.2015 | Power and Electrical Engineering

Riding a horse is far more complex than riding simulators

04.08.2015 | Agricultural and Forestry Science

CO2 removal cannot save the oceans – if we pursue business as usual

04.08.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>