Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doing more with less; in cellulo structure determinations

03.06.2014

Anyone involved in macromolecular crystallography will know that for many years scientists have had to rely on a multi-stage process utilizing protein, usually expressed in engineered cells, which is then extracted and purified before crystallization in vitro and finally prepared for analysis.

As a counter to this time-consuming and substantial scientific effort, there are a number of examples of protein crystallization events occurring in vivo, with next to no human input. In a case presented in a recent paper an insect virus exploits the phenomenon as part of its life cycle.


Not surprisingly an issue with intracellular protein crystals is that they are typically very small, limited by the size of the cell. However, microfocus beamlines at synchrotron light sources prove here to be capable and refined in the analysis of micron-scale in vivo samples.

A group of scientists from the Diamond Light Source and the University of Oxford, UK [Axford et al. (2014), Acta Cryst. D70, 1435-1441; doi:10.1107/S1399004714004714] has been able to study crystals inside the cells directly using X-ray analysis without complex attempts to extract and prepare samples.

It would not be out of place to assume that the presence of cellular material might compromise the experiment. However, the researchers’ results show that the exact opposite may actually be true; the cell maintains the crystals in an environment amenable to the collection of data. 

It will be interesting to see if an improved understanding of protein crystallization in vivo can bring more targets within reach of such analysis.

Certainly continued technical developments, including increased photon flux and reduced beam size, will improve the signal-to-noise ratio.

Together with more efficient data processing, this means that we will be able to do more with less and exploit novel microcrystal targets of increasing complexity for in vivo structural studies.

Jonathan Agbenyega
Business Development Manager, IUCr

Dr. Jonathan Agbenyega | Eurek Alert!

Further reports about: Crystallography X-ray beamlines collection crystallization crystals inside phenomenon ratio structure

More articles from Physics and Astronomy:

nachricht Error-free into the Quantum Computer Age
18.12.2017 | Universität Innsbruck

nachricht Search for planets with Carmenes successful
18.12.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Error-free into the Quantum Computer Age

18.12.2017 | Physics and Astronomy

Disarray in the brain

18.12.2017 | Studies and Analyses

2 million euros in funding for new MR-compatible electrophysiological brain implants

18.12.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>