Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA gripped in nanopores

Researchers analyse forces on DNA in gel

Molecular biologists, including the cool dudes from CSI, use gel electrophoresis to separate DNA fragments from each other in order to analyse the DNA.

A team of researchers under the leadership of Vici winner Serge Lemay, has now shown for the first time how the gel influences the movement of the DNA. The researchers drove a single DNA molecule through a nanopore in order to analyse the forces on the DNA. The results of the research were published on 29 March in Nature Physics.

The movement of DNA under the influence of an electric field, electrophoresis, is caused by negatively charged groups in the basic structure of the DNA. These negative charges are shielded by positive ions, that accumulate in a layer around the DNA. These ions retard the movement of DNA under the influence of an electric field. The electrostatic forces and counteracting friction of the gel are inextricably linked to each other. Therefore up until now it seemed impossible to investigate these two factors independently.

Combination of technologies
The researchers developed nanopores with different dimensions in order to vary the spatial confinement of the DNA. They then used an optical pincet to grab a Perspex ball to which the DNA was linked. In this way they pulled the DNA molecule through a nanopore. The various dimensions of the holes offered them a direct look at the hydrodynamic linkage between DNA and the nanopore.

The measurements revealed that the retarding forces exerted by the ions, slowly decreased if the DNA moved through a larger nanopore. The bigger the pore the smaller the resistance. Calculations based solely on electrostatic forces had yielded other expectations. The hydrodynamic environment was found to exert a greater influence than had been expected.

The team used a unique combination of different techniques. This combination formed a good basis for highly promising developments in single molecule techniques based on nanopores. For example, such techniques render the detailed detection of the interaction between proteins and DNA possible.

The first author of the article in Nature Physics is Stijn van Dorp of Delft University of Technology. The research was carried out by an international team of top researchers. Serge Lemay received a Vici grant from NWO. Cees Dekker received the prestigious NWO/Spinoza Award in 2003. Nynke Dekker received a Vidi grant from NWO.

Nature publication
Origin of the electrophoretic force on DNA in solid-state nanopores. Stijn van Dorp, Ulrich F. Keyser, Nynke H. Dekker, Cees Dekker, Serge G. Lemay.

Serge Lemay | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>