Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diverging thermal conductivity

08.05.2014

Physicists at the Max Planck Institute for Polymer Research show unlimited heat conduction in graphene.

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the National University of Singapore have attested that the thermal conductivity of graphene diverges with the size of the samples. This discovery challenges the fundamental laws of heat conduction for extended materials.

Davide Donadio, head of a Max Planck Research Group at the MPI-P, and his partner from Singapore were able to predict this phenomenon with computer simulations and to verify it in experiments. Their research and their results have now been presented in the scientific journal "Nature Communications".

"We recognized mechanisms of heat transfer that actually contradict Fourier’s law in the micrometer scale. Now all the previous experimental measurements of the thermal conductivity of graphene need to be reinterpreted. The very concept of thermal conductivity as an intrinsic property does not hold for graphene, at least for patches as large as several micrometers", says Davide Donadio.

Are material constants alterable after all?

The French physicist Joseph Fourier had postulated the laws of heat propagation in solids. Accordingly, thermal conductivity is an intrinsic material property that is normally independent of size or shape. In graphene, a two-dimensional layer of carbon atoms, it is not the case, as our scientists now found out. With experiments and computer simulations, they found that the thermal conductivity logarithmically increases as a function of the size of the graphene samples: i.e., the longer the graphene patches, the more heat can be transferred per length unit.

This is another unique property of this highly praised wonder material that is graphene: it is chemically very stable, flexible, a hundred times more tear-resistant than steel and at the same time very light. Graphene was already known to be an excellent heat conductor: The novelty here is that its thermal conductivity, which was so far regarded as a material constant, varies as the length of graphene increases. After analyzing the simulations, Davide Donadio found that this feature stems from the combination of reduced dimensionality and stiff chemical bonding, which make thermal vibration propagate with minimal dissipation at non-equilibrium conditions.

Optimum cooling for nanoelectronics

In the micro- and nano-electronics, heat is the limiting factor for smaller and more efficient components. Therefore, materials with virtually unlimited thermal conductivity hold an enormous potential for this kind of applications. Materials with outstanding electronic properties that are self-cooling too, as graphene might be, are the dream of every electronics engineer.

Davide Donadio, an Italian-born researcher, already dealt with nanostructures of carbon, crystallization processes and thermoelectric materials during his studies in Milan, his research stays at the ETH Zurich (Switzerland) and at the University of California, Davis (USA). Since 2010, he has been investigating, among others, thermal transport in nanostructures using theoretical physics and simulating the atomic behavior of substances with his Max Planck Research Group at the MPI-P.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/news/thermal_conductivity - the press release and original publication
http://www.mpip-mainz.mpg.de/theory_nanostructures - informatio about Davide Donadio and his research
http://www.mpip-mainz.mpg.de/home/en - Max Planck Institute for Polymer Research

Stephan Imhof | Max-Planck-Institut

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>