Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diverging thermal conductivity

08.05.2014

Physicists at the Max Planck Institute for Polymer Research show unlimited heat conduction in graphene.

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the National University of Singapore have attested that the thermal conductivity of graphene diverges with the size of the samples. This discovery challenges the fundamental laws of heat conduction for extended materials.

Davide Donadio, head of a Max Planck Research Group at the MPI-P, and his partner from Singapore were able to predict this phenomenon with computer simulations and to verify it in experiments. Their research and their results have now been presented in the scientific journal "Nature Communications".

"We recognized mechanisms of heat transfer that actually contradict Fourier’s law in the micrometer scale. Now all the previous experimental measurements of the thermal conductivity of graphene need to be reinterpreted. The very concept of thermal conductivity as an intrinsic property does not hold for graphene, at least for patches as large as several micrometers", says Davide Donadio.

Are material constants alterable after all?

The French physicist Joseph Fourier had postulated the laws of heat propagation in solids. Accordingly, thermal conductivity is an intrinsic material property that is normally independent of size or shape. In graphene, a two-dimensional layer of carbon atoms, it is not the case, as our scientists now found out. With experiments and computer simulations, they found that the thermal conductivity logarithmically increases as a function of the size of the graphene samples: i.e., the longer the graphene patches, the more heat can be transferred per length unit.

This is another unique property of this highly praised wonder material that is graphene: it is chemically very stable, flexible, a hundred times more tear-resistant than steel and at the same time very light. Graphene was already known to be an excellent heat conductor: The novelty here is that its thermal conductivity, which was so far regarded as a material constant, varies as the length of graphene increases. After analyzing the simulations, Davide Donadio found that this feature stems from the combination of reduced dimensionality and stiff chemical bonding, which make thermal vibration propagate with minimal dissipation at non-equilibrium conditions.

Optimum cooling for nanoelectronics

In the micro- and nano-electronics, heat is the limiting factor for smaller and more efficient components. Therefore, materials with virtually unlimited thermal conductivity hold an enormous potential for this kind of applications. Materials with outstanding electronic properties that are self-cooling too, as graphene might be, are the dream of every electronics engineer.

Davide Donadio, an Italian-born researcher, already dealt with nanostructures of carbon, crystallization processes and thermoelectric materials during his studies in Milan, his research stays at the ETH Zurich (Switzerland) and at the University of California, Davis (USA). Since 2010, he has been investigating, among others, thermal transport in nanostructures using theoretical physics and simulating the atomic behavior of substances with his Max Planck Research Group at the MPI-P.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/news/thermal_conductivity - the press release and original publication
http://www.mpip-mainz.mpg.de/theory_nanostructures - informatio about Davide Donadio and his research
http://www.mpip-mainz.mpg.de/home/en - Max Planck Institute for Polymer Research

Stephan Imhof | Max-Planck-Institut

More articles from Physics and Astronomy:

nachricht Astronomers confirm faintest early-universe galaxy ever seen
24.05.2016 | University of California - Los Angeles

nachricht Scientists explain how the giant magnetoelectric effect occurs in bismuth ferrite
23.05.2016 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Astronomers confirm faintest early-universe galaxy ever seen

24.05.2016 | Physics and Astronomy

Scientists find sustainable solutions for oysters in the future by looking into the past

24.05.2016 | Earth Sciences

Laser-manufactured customized lenses

24.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>