Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distant Star's Sound Waves Reveal Cycle Similar to Sun

30.08.2010
In a bid to unlock long-standing mysteries of the sun, including the impacts on Earth of its 11-year cycle, an international team of scientists has successfully probed a distant star.

By monitoring the star's sound waves, the team has observed a magnetic cycle analogous to the sun's solar cycle.

Results of the study, conducted by scientists at the U.S. National Center for Atmospheric Research (NCAR) in Boulder, Colo., and colleagues in France and Spain, are published this week in the journal Science.

The research was funded by the U.S. National Science Foundation (NSF), which is NCAR's sponsor, the CEA (the French Atomic Energy and Alternative Energies Commission), the French Stellar Physics National Research Plan, and the Spanish National Research Plan.

"This is an interesting study that was possible due to strong international cooperation," says Steve Nelson, NSF program director for NCAR.

The scientists studied a star known as HD49933, which is located 100 light years away from Earth in the constellation Monoceros, the Unicorn, just east of Orion.

The team examined the star's acoustic fluctuations, using a technique called "stellar seismology."

They detected the signature of "starspots," areas of intense magnetic activity on the surface that are similar to sunspots.

While scientists have previously observed these magnetic cycles in other stars, this was the first time they have discovered such a cycle using stellar seismology.

"Essentially, the star is ringing like a bell," says NCAR scientist Travis Metcalfe, a co-author of the paper.

"As it moves through its starspot cycle, the tone and volume of the ringing changes in a very specific pattern, moving to higher tones with lower volume at the peak of its magnetic cycle."

The technique could open the way to observing the magnetic activity of hundreds of stars, which could help evaluate new solar systems for the potential of supporting life.

Studying many stars this way could help scientists better understand how magnetic activity cycles can differ from star to star, as well as the processes behind such cycles.

The work could especially shed light on the magnetic activity processes that go on within the sun, furthering our understanding of its influence on Earth's climate.

It could also lead to better predictions of the solar cycle and resulting geomagnetic storms that can cause major disruption to power grids and communication networks.

"We've discovered a magnetic activity cycle in this star, similar to what we see with the sun," says co-author and NCAR scientist Savita Mathur. "This technique of listening to the stars will allow us to examine potentially hundreds of stars."

In addition to NCAR, the team's scientists are from France's Center for Nuclear Studies of Saclay (CEA-Saclay), Paris/Meudon Observatory (OPM), the University of Toulouse, and Spain's Institute of Astrophysics of the Canaries (IAC).

The team hopes to assess the potential for other stars in our galaxy to host planets, including some perhaps capable of sustaining life.

"Understanding the activity of stars harboring planets is necessary because magnetic conditions on the star's surface could influence the habitable zone where life could develop," says CEA-Saclay scientist Rafael Garcia, the study's lead author.

The scientists examined 187 days of data captured by the international Convection Rotation and Planetary Transits (CoRoT) space mission.

Launched on December 27, 2006, CoRoT was developed and is operated by the French National Center for Space Studies (CNES) with contributions of Austria, Belgium, Brazil, Germany, Spain, and the European Space Agency.

CoRoT is equipped with a 27-centimeter (11-inch) diameter telescope and a 4-CCD (charge-coupled device) camera sensitive to tiny variations in the light intensity from stars.

The study authors found that HD49933 is much bigger and hotter than the sun, and its magnetic cycle is much shorter.

Whereas past surveys of stars have found cycles similar to the 11-year cycle of the sun, this star has a cycle of somewhat less than a year.

This is important to scientists because it may enable them to observe an entire cycle more quickly, thereby gleaning more information about magnetic patterns than if they could only observe part of a longer cycle.

The scientists plan to expand their observations by using other stars observed by CoRoT as well as data from NASA's Kepler mission, launched in March 2009.

Kepler is seeking Earth-sized planets to survey. The mission will provide continuous data over three to five years from hundreds of stars that could potentially be hosting planets.

"If it turns out that a short magnetic cycle is common in stars, then we will potentially observe a large number of full cycles during Kepler's mission," says Metcalfe.

"The more stars and complete magnetic cycles we have to observe, the more we can place the sun into context and explore the impacts of magnetic activity on possible planets hosted by these stars."

The team has spent the past six months exploring the structure and dynamics of HD49933 and classifying its size.

They will next verify their observations using ground-based telescopes to confirm the magnetic activity of the star.

When the star reemerges from behind the sun in September, they hope to measure the full length of the cycle.

The CoRoT mission was designed to collect up to 150 days of continuous data at a time, which was not enough to determine the exact length of the star's cycle.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
David Hosansky, NCAR (303) 497-8611 hosansky@ucar.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.
View a video
(http://www.nsf.gov/news/news_videos.jsp?cntn_id=117554&media_id=68351&org=NSF) on the monitoring of the magnetic cycle of a distant star by the CoRoT satellite.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov
http://nsf.gov/news/news_summ.jsp?cntn_id=117554&org=NSF&from=news

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>