Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distant Star's Sound Waves Reveal Cycle Similar to Sun

30.08.2010
In a bid to unlock long-standing mysteries of the sun, including the impacts on Earth of its 11-year cycle, an international team of scientists has successfully probed a distant star.

By monitoring the star's sound waves, the team has observed a magnetic cycle analogous to the sun's solar cycle.

Results of the study, conducted by scientists at the U.S. National Center for Atmospheric Research (NCAR) in Boulder, Colo., and colleagues in France and Spain, are published this week in the journal Science.

The research was funded by the U.S. National Science Foundation (NSF), which is NCAR's sponsor, the CEA (the French Atomic Energy and Alternative Energies Commission), the French Stellar Physics National Research Plan, and the Spanish National Research Plan.

"This is an interesting study that was possible due to strong international cooperation," says Steve Nelson, NSF program director for NCAR.

The scientists studied a star known as HD49933, which is located 100 light years away from Earth in the constellation Monoceros, the Unicorn, just east of Orion.

The team examined the star's acoustic fluctuations, using a technique called "stellar seismology."

They detected the signature of "starspots," areas of intense magnetic activity on the surface that are similar to sunspots.

While scientists have previously observed these magnetic cycles in other stars, this was the first time they have discovered such a cycle using stellar seismology.

"Essentially, the star is ringing like a bell," says NCAR scientist Travis Metcalfe, a co-author of the paper.

"As it moves through its starspot cycle, the tone and volume of the ringing changes in a very specific pattern, moving to higher tones with lower volume at the peak of its magnetic cycle."

The technique could open the way to observing the magnetic activity of hundreds of stars, which could help evaluate new solar systems for the potential of supporting life.

Studying many stars this way could help scientists better understand how magnetic activity cycles can differ from star to star, as well as the processes behind such cycles.

The work could especially shed light on the magnetic activity processes that go on within the sun, furthering our understanding of its influence on Earth's climate.

It could also lead to better predictions of the solar cycle and resulting geomagnetic storms that can cause major disruption to power grids and communication networks.

"We've discovered a magnetic activity cycle in this star, similar to what we see with the sun," says co-author and NCAR scientist Savita Mathur. "This technique of listening to the stars will allow us to examine potentially hundreds of stars."

In addition to NCAR, the team's scientists are from France's Center for Nuclear Studies of Saclay (CEA-Saclay), Paris/Meudon Observatory (OPM), the University of Toulouse, and Spain's Institute of Astrophysics of the Canaries (IAC).

The team hopes to assess the potential for other stars in our galaxy to host planets, including some perhaps capable of sustaining life.

"Understanding the activity of stars harboring planets is necessary because magnetic conditions on the star's surface could influence the habitable zone where life could develop," says CEA-Saclay scientist Rafael Garcia, the study's lead author.

The scientists examined 187 days of data captured by the international Convection Rotation and Planetary Transits (CoRoT) space mission.

Launched on December 27, 2006, CoRoT was developed and is operated by the French National Center for Space Studies (CNES) with contributions of Austria, Belgium, Brazil, Germany, Spain, and the European Space Agency.

CoRoT is equipped with a 27-centimeter (11-inch) diameter telescope and a 4-CCD (charge-coupled device) camera sensitive to tiny variations in the light intensity from stars.

The study authors found that HD49933 is much bigger and hotter than the sun, and its magnetic cycle is much shorter.

Whereas past surveys of stars have found cycles similar to the 11-year cycle of the sun, this star has a cycle of somewhat less than a year.

This is important to scientists because it may enable them to observe an entire cycle more quickly, thereby gleaning more information about magnetic patterns than if they could only observe part of a longer cycle.

The scientists plan to expand their observations by using other stars observed by CoRoT as well as data from NASA's Kepler mission, launched in March 2009.

Kepler is seeking Earth-sized planets to survey. The mission will provide continuous data over three to five years from hundreds of stars that could potentially be hosting planets.

"If it turns out that a short magnetic cycle is common in stars, then we will potentially observe a large number of full cycles during Kepler's mission," says Metcalfe.

"The more stars and complete magnetic cycles we have to observe, the more we can place the sun into context and explore the impacts of magnetic activity on possible planets hosted by these stars."

The team has spent the past six months exploring the structure and dynamics of HD49933 and classifying its size.

They will next verify their observations using ground-based telescopes to confirm the magnetic activity of the star.

When the star reemerges from behind the sun in September, they hope to measure the full length of the cycle.

The CoRoT mission was designed to collect up to 150 days of continuous data at a time, which was not enough to determine the exact length of the star's cycle.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
David Hosansky, NCAR (303) 497-8611 hosansky@ucar.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.
View a video
(http://www.nsf.gov/news/news_videos.jsp?cntn_id=117554&media_id=68351&org=NSF) on the monitoring of the magnetic cycle of a distant star by the CoRoT satellite.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov
http://nsf.gov/news/news_summ.jsp?cntn_id=117554&org=NSF&from=news

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>