Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissipation desired

21.07.2009
Novel concept for universal quantum computers exploits dissipative processes.

Classical computers are not powerful enough to describe even simple quantum systems. All the more it is difficult to understand complex many body systems. Quantum computers which use quantum particles instead of classical bits may help to overcome this problem.

Up to now complete isolation of the quantum system from the environment has been considered to be a precondition for the realisation of a universal quantum computer - a high challenge for experimental physics.

A new concept, developed by Prof. Ignacio Cirac, director at Max Planck Institute of Quantum Optics and head of the Theory Division, and two former members of the Theory Division, Dr. Michael Wolf (now at Nils Bohr Institute in Copenhagen), and Prof. Frank Verstraete (now at the University of Vienna) turns these ideas upside down. As the scientists report in Nature Physics (AOP 20 July 2009, DOI 10.1038/NPHYS1342), quantum systems that are coupled to the environment by dissipative processes can be used for efficient universal quantum computation as well as the preparation of exotic quantum states.

Furthermore, these systems exhibit some inherent robustness. Though still being a proof-of-principle demonstration the concept can in principle be verified with systems such as atomic gases in optical lattices or trapped ions.

Standard quantum computation is based on a system of quantum particles such as atoms or ions that serve at storing and encoding information. It exploits the unique property of these particles to take on not only states like '1' or '0' but also all kinds of superposition of these states. Manipulations acting on these qubits are always reversible, dubbed 'unitary'. Standard circuits consist of quantum gates that entangle two qubits at a time. However, this concept faces a strong adversary: once the system starts leaking information to the environment the quantum effects that give rise to the power of computing, cryptography and simulation - superposition and entanglement of states - get destroyed. Therefore the system has to be extremely well isolated from the environment.

On the contrary, the new concept of Cirac, Verstraete and Wolf makes use of these dissipative processes to perform efficient quantum computation and state engineering. In order to do so the dissipation dynamics has to be engineered such that it drives the system towards a steady state. This steady state can then represent the ground state of the system, it could be a particular exotic state, or it could encode the result of the computation. An advantage is the fact that, given the dissipative nature of the process, the system is driven towards its steady state independently of the initial state and hence of eventual perturbation along the way. That's why 'Disspative Quantum Computation' (DQC) exhibits an inherent robustness.

Though neither state preparation nor unitary dynamics are required DQC turns out to obtain a computational power that is equivalent to that of standard quantum circuits. Furthermore, this method is particularly suited for preparing interesting quantum states: for example, topological systems give rise to exotic states that play an important role in novel quantum effects like the fractional quantum Hall-effect.

Right now this concept is a proof-of-principle demonstration that dissipation provides an alternative way of carrying out quantum computations or state engineering. It aims however at being adapted in experiments with systems that use atomic gases in optical lattices or trapped ions. "This way of performing quantum computation defies most of the requirements that were thought to be necessary to build such a device", Prof. Cirac points out. "This may lead to different kinds of realizations of quantum computers that are either most robust or easy to implement. But what is more important, it gives a completely different perspective to the way a quantum computer may work in practice." [Olivia Meyer-Streng]

Original publication:
Frank Verstraete, Michael M.Wolf and J. Ignacio Cirac
Quantum computation and quantum-state engineering driven by dissipation
Nature Physics, Advance Online Publication, 20. Juli 2009, DOI 10.1038/NPHYS1342
Contact:
Prof. Dr. Ignacio Cirac
Professor of Physics, TU München
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 705 / 736
Fax: +49 - 89 / 32905 336
E-mail: ignacio.cirac@mpq.mpg.de
www.mpq.mpg.de/cirac
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de/cirac

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>