Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissipation desired

21.07.2009
Novel concept for universal quantum computers exploits dissipative processes.

Classical computers are not powerful enough to describe even simple quantum systems. All the more it is difficult to understand complex many body systems. Quantum computers which use quantum particles instead of classical bits may help to overcome this problem.

Up to now complete isolation of the quantum system from the environment has been considered to be a precondition for the realisation of a universal quantum computer - a high challenge for experimental physics.

A new concept, developed by Prof. Ignacio Cirac, director at Max Planck Institute of Quantum Optics and head of the Theory Division, and two former members of the Theory Division, Dr. Michael Wolf (now at Nils Bohr Institute in Copenhagen), and Prof. Frank Verstraete (now at the University of Vienna) turns these ideas upside down. As the scientists report in Nature Physics (AOP 20 July 2009, DOI 10.1038/NPHYS1342), quantum systems that are coupled to the environment by dissipative processes can be used for efficient universal quantum computation as well as the preparation of exotic quantum states.

Furthermore, these systems exhibit some inherent robustness. Though still being a proof-of-principle demonstration the concept can in principle be verified with systems such as atomic gases in optical lattices or trapped ions.

Standard quantum computation is based on a system of quantum particles such as atoms or ions that serve at storing and encoding information. It exploits the unique property of these particles to take on not only states like '1' or '0' but also all kinds of superposition of these states. Manipulations acting on these qubits are always reversible, dubbed 'unitary'. Standard circuits consist of quantum gates that entangle two qubits at a time. However, this concept faces a strong adversary: once the system starts leaking information to the environment the quantum effects that give rise to the power of computing, cryptography and simulation - superposition and entanglement of states - get destroyed. Therefore the system has to be extremely well isolated from the environment.

On the contrary, the new concept of Cirac, Verstraete and Wolf makes use of these dissipative processes to perform efficient quantum computation and state engineering. In order to do so the dissipation dynamics has to be engineered such that it drives the system towards a steady state. This steady state can then represent the ground state of the system, it could be a particular exotic state, or it could encode the result of the computation. An advantage is the fact that, given the dissipative nature of the process, the system is driven towards its steady state independently of the initial state and hence of eventual perturbation along the way. That's why 'Disspative Quantum Computation' (DQC) exhibits an inherent robustness.

Though neither state preparation nor unitary dynamics are required DQC turns out to obtain a computational power that is equivalent to that of standard quantum circuits. Furthermore, this method is particularly suited for preparing interesting quantum states: for example, topological systems give rise to exotic states that play an important role in novel quantum effects like the fractional quantum Hall-effect.

Right now this concept is a proof-of-principle demonstration that dissipation provides an alternative way of carrying out quantum computations or state engineering. It aims however at being adapted in experiments with systems that use atomic gases in optical lattices or trapped ions. "This way of performing quantum computation defies most of the requirements that were thought to be necessary to build such a device", Prof. Cirac points out. "This may lead to different kinds of realizations of quantum computers that are either most robust or easy to implement. But what is more important, it gives a completely different perspective to the way a quantum computer may work in practice." [Olivia Meyer-Streng]

Original publication:
Frank Verstraete, Michael M.Wolf and J. Ignacio Cirac
Quantum computation and quantum-state engineering driven by dissipation
Nature Physics, Advance Online Publication, 20. Juli 2009, DOI 10.1038/NPHYS1342
Contact:
Prof. Dr. Ignacio Cirac
Professor of Physics, TU München
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 705 / 736
Fax: +49 - 89 / 32905 336
E-mail: ignacio.cirac@mpq.mpg.de
www.mpq.mpg.de/cirac
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de/cirac

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>