Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disorderly conduct

20.07.2012
Probing the role of disorder in quantum coherence

A new experiment conducted at the Joint Quantum Institute (JQI)* examines the relationship between quantum coherence, an important aspect of certain materials kept at low temperature, and the imperfections in those materials. These findings should be useful in forging a better understanding of disorder, and in turn in developing better quantum-based devices, such as superconducting magnets.


Two thin planes of cold atoms are held in an optical lattice by an array of laser beams. Still another laser beam, passed through a diffusing material, adds an element of disorder to the atoms in the form of a speckle pattern.

Credit: Matthew Beeler

Most things in nature are imperfect at some level. Fortunately, imperfections---a departure, say, from an orderly array of atoms in a crystalline solid---are often advantageous. For example, copper wire, which carries so much of the world's electricity, conducts much better if at least some impurity atoms are present.

In other words, a pinch of disorder is good. But there can be too much of this good thing. The issue of disorder is so important in condensed matter physics, and so difficult to understand directly, that some scientists have been trying for some years to simulate with thin vapors of cold atoms the behavior of electrons flowing through solids trillions of times more dense. With their ability to control the local forces over these atoms, physicists hope to shed light on more complicated case of solids.

That's where the JQI experiment comes in. Specifically, Steve Rolston and his colleagues have set up an optical lattice of rubidium atoms held at temperature close to absolute zero. In such a lattice atoms in space are held in orderly proximity not by natural inter-atomic forces but by the forces exerted by an array of laser beams. These atoms, moreover, constitute a Bose Einstein condensate (BEC), a special condition in which they all belong to a single quantum state.

This is appropriate since the atoms are meant to be a proxy for the electrons flowing through a solid superconductor. In some so called high temperature superconductors (HTSC), the electrons move in planes of copper and oxygen atoms. These HTSC materials work, however, only if a fillip of impurity atoms, such as barium or yttrium, is present. Theorists have not adequately explained why this bit of disorder in the underlying material should be necessary for attaining superconductivity.

The JQI experiment has tried to supply palpable data that can illuminate the issue of disorder. In solids, atoms are a fraction of a nanometer (billionth of a meter) apart. At JQI the atoms are about a micron (a millionth of a meter) apart. Actually, the JQI atom swarm consists of a 2-dimensional disk. "Disorder" in this disk consists not of impurity atoms but of "speckle." When a laser beam strikes a rough surface, such as a cinderblock wall, it is scattered in a haphazard pattern. This visible speckle effect is what is used to slightly disorganize the otherwise perfect arrangement of Rb atoms in the JQI sample.

In superconductors, the slight disorder in the form of impurities ensures a very orderly "coherence" of the supercurrent. That is, the electrons moving through the solid flow as a single coordinated train of waves and retain their cohesiveness even in the midst of impurity atoms.

In the rubidium vapor, analogously, the slight disorder supplied by the speckle laser ensures that the Rb atoms retain their coordinated participation in the unified (BEC) quantum wave structure. But only up to a point. If too much disorder is added---if the speckle is too large---then the quantum coherence can go away. Probing this transition numerically was the object of the JQI experiment. The setup is illustrated in figure 1.

And how do you know when you've gone too far with the disorder? How do you know that quantum coherence has been lost? By making coherence visible.

The JQI scientists cleverly pry their disk-shaped gas of atoms into two parallel sheets, looking like two thin crepes, one on top of each other. Thereafter, if all the laser beams are turned off, the two planes will collide like miniature galaxies. If the atoms were in a coherent condition, their collision will result in a crisp interference pattern showing up on a video screen as a series of high-contrast dark and light stripes.

If, however, the imposed disorder had been too high, resulting in a loss of coherence among the atoms, then the interference pattern will be washed out. Figure 2 shows this effect at work. Frames b and c respectively show what happens when the degree of disorder is just right and when it is too much.

"Disorder figures in about half of all condensed matter physics," says Steve Rolston. "What we're doing is mimicking the movement of electrons in 3-dimensional solids using cold atoms in a 2-dimensional gas. Since there don't seem to be any theoretical predictions to help us understand what we're seeing we've moved into new experimental territory."

Where does the JQI work go next? Well, in figure 2a you can see that the interference pattern is still visible but somewhat garbled. That arises from the fact that for this amount of disorder several vortices---miniature whirlpools of atoms---have sprouted within the gas. Exactly such vortices among electrons emerge in superconductivity, limiting their ability to maintain a coherent state.

The new results are published in the New Journal of Physics: http://iopscience.iop.org/1367-2630/14/7/073024?fromSearchPage=true "Disorder-driven loss of phase coherence in a quasi-2D cold atom system," by M C Beeler, M E W Reed, T Hong, and S L Rolston.

Another of the JQI scientists, Matthew Beeler, underscores the importance of understanding the transition from the coherent state to incoherent state owing to the fluctuations introduced by disorder:

"This paper is the first direct observation of disorder causing these phase fluctuations. To the extent that our system of cold atoms is like a HTSC superconductor, this is a direct connection between disorder and a mechanism which drives the system from superconductor to insulator."

(*)The Joint Quantum Institute is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

Phillip F. Schewe | EurekAlert!
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>