Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disorderly conduct

20.07.2012
Probing the role of disorder in quantum coherence

A new experiment conducted at the Joint Quantum Institute (JQI)* examines the relationship between quantum coherence, an important aspect of certain materials kept at low temperature, and the imperfections in those materials. These findings should be useful in forging a better understanding of disorder, and in turn in developing better quantum-based devices, such as superconducting magnets.


Two thin planes of cold atoms are held in an optical lattice by an array of laser beams. Still another laser beam, passed through a diffusing material, adds an element of disorder to the atoms in the form of a speckle pattern.

Credit: Matthew Beeler

Most things in nature are imperfect at some level. Fortunately, imperfections---a departure, say, from an orderly array of atoms in a crystalline solid---are often advantageous. For example, copper wire, which carries so much of the world's electricity, conducts much better if at least some impurity atoms are present.

In other words, a pinch of disorder is good. But there can be too much of this good thing. The issue of disorder is so important in condensed matter physics, and so difficult to understand directly, that some scientists have been trying for some years to simulate with thin vapors of cold atoms the behavior of electrons flowing through solids trillions of times more dense. With their ability to control the local forces over these atoms, physicists hope to shed light on more complicated case of solids.

That's where the JQI experiment comes in. Specifically, Steve Rolston and his colleagues have set up an optical lattice of rubidium atoms held at temperature close to absolute zero. In such a lattice atoms in space are held in orderly proximity not by natural inter-atomic forces but by the forces exerted by an array of laser beams. These atoms, moreover, constitute a Bose Einstein condensate (BEC), a special condition in which they all belong to a single quantum state.

This is appropriate since the atoms are meant to be a proxy for the electrons flowing through a solid superconductor. In some so called high temperature superconductors (HTSC), the electrons move in planes of copper and oxygen atoms. These HTSC materials work, however, only if a fillip of impurity atoms, such as barium or yttrium, is present. Theorists have not adequately explained why this bit of disorder in the underlying material should be necessary for attaining superconductivity.

The JQI experiment has tried to supply palpable data that can illuminate the issue of disorder. In solids, atoms are a fraction of a nanometer (billionth of a meter) apart. At JQI the atoms are about a micron (a millionth of a meter) apart. Actually, the JQI atom swarm consists of a 2-dimensional disk. "Disorder" in this disk consists not of impurity atoms but of "speckle." When a laser beam strikes a rough surface, such as a cinderblock wall, it is scattered in a haphazard pattern. This visible speckle effect is what is used to slightly disorganize the otherwise perfect arrangement of Rb atoms in the JQI sample.

In superconductors, the slight disorder in the form of impurities ensures a very orderly "coherence" of the supercurrent. That is, the electrons moving through the solid flow as a single coordinated train of waves and retain their cohesiveness even in the midst of impurity atoms.

In the rubidium vapor, analogously, the slight disorder supplied by the speckle laser ensures that the Rb atoms retain their coordinated participation in the unified (BEC) quantum wave structure. But only up to a point. If too much disorder is added---if the speckle is too large---then the quantum coherence can go away. Probing this transition numerically was the object of the JQI experiment. The setup is illustrated in figure 1.

And how do you know when you've gone too far with the disorder? How do you know that quantum coherence has been lost? By making coherence visible.

The JQI scientists cleverly pry their disk-shaped gas of atoms into two parallel sheets, looking like two thin crepes, one on top of each other. Thereafter, if all the laser beams are turned off, the two planes will collide like miniature galaxies. If the atoms were in a coherent condition, their collision will result in a crisp interference pattern showing up on a video screen as a series of high-contrast dark and light stripes.

If, however, the imposed disorder had been too high, resulting in a loss of coherence among the atoms, then the interference pattern will be washed out. Figure 2 shows this effect at work. Frames b and c respectively show what happens when the degree of disorder is just right and when it is too much.

"Disorder figures in about half of all condensed matter physics," says Steve Rolston. "What we're doing is mimicking the movement of electrons in 3-dimensional solids using cold atoms in a 2-dimensional gas. Since there don't seem to be any theoretical predictions to help us understand what we're seeing we've moved into new experimental territory."

Where does the JQI work go next? Well, in figure 2a you can see that the interference pattern is still visible but somewhat garbled. That arises from the fact that for this amount of disorder several vortices---miniature whirlpools of atoms---have sprouted within the gas. Exactly such vortices among electrons emerge in superconductivity, limiting their ability to maintain a coherent state.

The new results are published in the New Journal of Physics: http://iopscience.iop.org/1367-2630/14/7/073024?fromSearchPage=true "Disorder-driven loss of phase coherence in a quasi-2D cold atom system," by M C Beeler, M E W Reed, T Hong, and S L Rolston.

Another of the JQI scientists, Matthew Beeler, underscores the importance of understanding the transition from the coherent state to incoherent state owing to the fluctuations introduced by disorder:

"This paper is the first direct observation of disorder causing these phase fluctuations. To the extent that our system of cold atoms is like a HTSC superconductor, this is a direct connection between disorder and a mechanism which drives the system from superconductor to insulator."

(*)The Joint Quantum Institute is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

Phillip F. Schewe | EurekAlert!
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>