Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of New Type of Supernova May Shed Light on Universe

25.05.2010
Not all explosions are created equal: It’s as true for film effects as it is for the stars. Yet, until now, scientists had only observed two basic kinds of exploding stars, known as supernovae. Now, scientists at the Weizmann Institute of Science, in collaboration with others around the world, have identified a third type of supernova. Their findings appeared this week in Nature.

The first two types of supernova are either hot, young giants that go out in a violent display as they collapse under their own weight, or old, dense, white dwarves that blow up in a thermonuclear explosion.

The new supernova appeared in telescope images in early January 2005, and scientists, seeing that it had recently begun the process of exploding, started collecting and combining data from different telescope sites around the world, measuring both the amount of material thrown off in the explosion and its chemical makeup. But Dr. Avishay Gal-Yam, Hagai Perets (now at the Harvard-Smithsonian Center for Astrophysics), Iair Arcavi, and Michael Kiewe of the Weizmann Institute’s Faculty of Physics, together with Paolo Mazzali of the Max-Planck Institute for Astrophysics, Germany, the Scuola Normale Superiore, Pisa, and INAF/Padova Observatory in Italy, Prof. David Arnett from the University of Arizona, and researchers from across the US, Canada, Chile, and the UK, soon found that the new supernova did not fit either of the known patterns.

On the one hand, the amount of material hurled out from the supernova was too small for it to have come from an exploding giant. In addition, its location, distant from the busy hubs where new stars form, implied that it was an older star that had had time to wander off from its birthplace. On the other hand, its chemical makeup didn’t match that commonly seen in the second type. “It was clear,” says Dr. Perets, the paper’s lead author, “that we were seeing a new type of supernova.” The scientists turned to computer simulations to see what kind of process could have produced such a result.

The common type of exploding white dwarf (a type Ia supernova) is mainly made up of carbon and oxygen, and the chemical composition of the ejected material reflects this. The newly discovered supernova had unusually high levels of the elements calcium and titanium; these are the products of a nuclear reaction involving helium, rather than carbon and oxygen. “We’ve never before seen a spectrum like this one,” says Dr. Mazzali. “It was clear that the unique chemical composition of this explosion held an important key to understanding it.” Where did the helium come from? The simulations suggest that a pair of white dwarves are involved; one of them stealing helium from the other. When the thief star’s helium load rises past a certain point, the explosion occurs. “The donor star is probably completely destroyed in the process, but we’re not quite sure about the fate of the thief star,” says Dr. Gal-Yam.

The scientists believe that several other previously observed supernovae may fit this pattern. In fact, these relatively dim explosions might not be all that rare; if so, their occurrence could explain some puzzling phenomena in the universe. For example, almost all the elements heavier than hydrogen and helium have been created in, and dispersed by, supernovae; the new type could help explain the prevalence of calcium in both the universe and in our bodies. It might also account for observed concentrations of particles called positrons in the center of our galaxy. Positrons are identical to electrons, but with an opposite charge, and some have hypothesized that the decay of yet unseen “dark matter” particles may be responsible for their presence. But one of the products of the new supernova is a radioactive form of titanium that, as it decays, emits positrons. “Dark matter may or may not exist,” says Dr. Gal-Yam, “but these positrons are perhaps just as easily accounted for by the third type of supernova.”

Dr. Avishay Gal-Yam’s research is supported by the Nella and Leon Benoziyo Center for Astrophysics; the Yeda-Sela Center for Basic Research; the Peter and Patricia Gruber Awards; the Legacy Heritage Fund Program of the Israel Science Foundation; and Miel de Botton Aynsley ,UK.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>