Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery is key to understanding neutrino transformations

09.03.2012
A new discovery provides a crucial key to understanding how neutrinos – ghostly particles with multiple personalities – change identity and may help shed light on why matter exists in the universe.

In an announcement today (Thursday, March 8), members of the large international Daya Bay collaboration reported the last of three measurements that describe how the three types, or flavors, of neutrinos blend with one another, providing an explanation for their spooky morphing from one flavor to another, a phenomenon called neutrino oscillation.


The inside of a cylindrical antineutrino detector before being filled with clear liquid scintillator, which reveals antineutrino interactions by the very faint flashes of light they emit. Sensitive photomultiplier tubes line the detector walls, ready to amplify and record the telltale flashes. (Roy Kaltschmidt photo, LBNL)

The inside of a cylindrical antineutrino detector before being filled with clear liquid scintillator, which reveals antineutrino interactions by the very faint flashes of light they emit. Sensitive photomultiplier tubes line the detector walls, ready to amplify and record the telltale flashes. (Roy Kaltschmidt photo, LBNL)

The measurement makes possible new experiments that may help explain why the present universe is filled mostly with matter, and not equal parts of matter and antimatter that would have annihilated each other to leave behind nothing but energy. One theory is that a process shortly after the birth of the universe led to the asymmetry, but a necessary condition for this is the violation of charge-parity (or CP) symmetry. If neutrinos and their antimatter equivalent, antineutrinos, oscillate differently, this could provide the explanation.

“The result is very exciting, because it essentially allows us to compare neutrino and antineutrino oscillations in the future and see how different they are and hopefully have an answer to the question, Why do we exist?” said Kam-Biu Luk, a professor of physics at the University of California, Berkeley, and a faculty scientist at Lawrence Berkeley National Laboratory (LBNL). Luk is co-spokesperson of the experiment and heads the U.S. participation in this collaboration.

Researchers knew that if the observed third kind of oscillation were zero or near zero, it would make further study of matter-antimatter asymmetry difficult.

“This is a new type of neutrino oscillation, and it is surprisingly large,” said Yifang Wang of China’s Institute of High Energy Physics (IHEP), who is the co-spokesperson and Chinese project manager of the Daya Bay experiment. “Our precise measurement will complete the understanding of the neutrino oscillation and pave the way for the future understanding of matter-antimatter asymmetry in the universe.”

“Berkeley has played a key role since day one in the Daya Bay experiment, one of the biggest experimental particle physics collaborations ever between the U.S. and China,” said Graham Fleming, UC Berkeley vice chancellor for research. “The large value of the mixing angle theta one-three from this experiment enables a very broad program of fundamental new physics including the proposed Long Baseline Neutrino experiment at the Sanford Underground Research Facility in South Dakota.”

The researchers have submitted a paper describing their results to the journal Physical Review Letters.

Using antineutrinos from Chinese nuclear reactors

The results come from the Daya Bay Reactor Antineutrino Experiment in Guangdong Province, China, near Hong Kong, which is a joint collaboration between scientists in the United States, China, the Czech Republic, Hong Kong, Russia and Taiwan. The U.S. institutions include UC Berkeley and LBNL, as well as Brookhaven National Laboratory, the University of Wisconsin and Caltech.

Nuclear power reactors at Daya Bay emit one kind or flavor of antineutrino – electron antineutrinos – that are identified in the six underground detectors. These detectors contain a liquid scintillator loaded with the element gadolinium. When the electron antineutrinos interact in the liquid, a blue glow is emitted.

Because some of the antineutrinos emitted by the reactors change flavor as they travel, the flux of electron antineutrinos measured in the detectors 1.7 kilometers from the reactor is less than the flux coming directly from the reactor and measured in the nearby detectors that are about 500 meters away. The deficit allowed scientists to determine the value of the so-called mixing angle (theta one-three, or è13), the last to be measured of three mixing angles needed to interpret neutrinos’ flavor-changing behavior.

“Although we’re still two detectors shy of the complete experimental design, we’ve had extraordinary success in detecting the number of electron antineutrinos that disappear as they travel from the reactors to the detectors nearly two kilometers away,” Luk said.

Neutrinos interact so weakly with other types of matter that they can pass through Earth as if it were not there. Once thought to be fairly boring, with zero mass and always traveling at the speed of light, neutrinos have proved to be a major challenge to the Standard Model of particle physics. Experiments over the past two decades showed that neutrinos do have mass and change their identity as they oscillate between three flavors: electron, muon and tau.

Neutrinos’ shifting personalities require them to have at least some mass – probably less than one-millionth that of an electron – because that is what causes their strange identity problem. Each flavor of neutrino is a mixture of three different masses that fluctuate with time. Just as a white light composed of red, green and blue shifts its tint as the proportions of each color change, so the type of a neutrino changes as the proportions of the masses oscillate.

“Once a neutrino starts to propagate in space, it’s very hard to tell what its identity is until we remeasure it,” as in the Baya Day experiment, Luk said.

Three numbers, called mixing angles, are part of the equations that describe these oscillations. The largest two were measured earlier in similar experiments – including the KamLand collaboration, in which UC Berkeley and LBNL were active participants – but with detectors set hundreds of kilometers from the neutrino source. The oscillation period associated with the third mixing angle was expected to be so small that a much shorter baseline experiment was needed, hence the Daya Bay collaboration. The six power reactors at Daya Bay and nearby Ling Ao yield millions of quadrillions of electron antineutrinos every second, of which the six detectors recorded tens of thousands between Dec. 24, 2011, and Feb. 17, 2012.

Daya Bay will complete the installation of the remaining two detectors this summer to obtain more data about neutrino oscillations. As a result, Daya Bay will continue to have an interaction rate higher than three competing experiments in France, South Korea and Japan , making it “the leading theta one-three experiment in the world,” said William Edwards, a specialist in the physics department at UC Berkeley and LBNL and the U.S. project and operations manager for the Daya Bay experiment.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>