Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery is key to understanding neutrino transformations

09.03.2012
A new discovery provides a crucial key to understanding how neutrinos – ghostly particles with multiple personalities – change identity and may help shed light on why matter exists in the universe.

In an announcement today (Thursday, March 8), members of the large international Daya Bay collaboration reported the last of three measurements that describe how the three types, or flavors, of neutrinos blend with one another, providing an explanation for their spooky morphing from one flavor to another, a phenomenon called neutrino oscillation.


The inside of a cylindrical antineutrino detector before being filled with clear liquid scintillator, which reveals antineutrino interactions by the very faint flashes of light they emit. Sensitive photomultiplier tubes line the detector walls, ready to amplify and record the telltale flashes. (Roy Kaltschmidt photo, LBNL)

The inside of a cylindrical antineutrino detector before being filled with clear liquid scintillator, which reveals antineutrino interactions by the very faint flashes of light they emit. Sensitive photomultiplier tubes line the detector walls, ready to amplify and record the telltale flashes. (Roy Kaltschmidt photo, LBNL)

The measurement makes possible new experiments that may help explain why the present universe is filled mostly with matter, and not equal parts of matter and antimatter that would have annihilated each other to leave behind nothing but energy. One theory is that a process shortly after the birth of the universe led to the asymmetry, but a necessary condition for this is the violation of charge-parity (or CP) symmetry. If neutrinos and their antimatter equivalent, antineutrinos, oscillate differently, this could provide the explanation.

“The result is very exciting, because it essentially allows us to compare neutrino and antineutrino oscillations in the future and see how different they are and hopefully have an answer to the question, Why do we exist?” said Kam-Biu Luk, a professor of physics at the University of California, Berkeley, and a faculty scientist at Lawrence Berkeley National Laboratory (LBNL). Luk is co-spokesperson of the experiment and heads the U.S. participation in this collaboration.

Researchers knew that if the observed third kind of oscillation were zero or near zero, it would make further study of matter-antimatter asymmetry difficult.

“This is a new type of neutrino oscillation, and it is surprisingly large,” said Yifang Wang of China’s Institute of High Energy Physics (IHEP), who is the co-spokesperson and Chinese project manager of the Daya Bay experiment. “Our precise measurement will complete the understanding of the neutrino oscillation and pave the way for the future understanding of matter-antimatter asymmetry in the universe.”

“Berkeley has played a key role since day one in the Daya Bay experiment, one of the biggest experimental particle physics collaborations ever between the U.S. and China,” said Graham Fleming, UC Berkeley vice chancellor for research. “The large value of the mixing angle theta one-three from this experiment enables a very broad program of fundamental new physics including the proposed Long Baseline Neutrino experiment at the Sanford Underground Research Facility in South Dakota.”

The researchers have submitted a paper describing their results to the journal Physical Review Letters.

Using antineutrinos from Chinese nuclear reactors

The results come from the Daya Bay Reactor Antineutrino Experiment in Guangdong Province, China, near Hong Kong, which is a joint collaboration between scientists in the United States, China, the Czech Republic, Hong Kong, Russia and Taiwan. The U.S. institutions include UC Berkeley and LBNL, as well as Brookhaven National Laboratory, the University of Wisconsin and Caltech.

Nuclear power reactors at Daya Bay emit one kind or flavor of antineutrino – electron antineutrinos – that are identified in the six underground detectors. These detectors contain a liquid scintillator loaded with the element gadolinium. When the electron antineutrinos interact in the liquid, a blue glow is emitted.

Because some of the antineutrinos emitted by the reactors change flavor as they travel, the flux of electron antineutrinos measured in the detectors 1.7 kilometers from the reactor is less than the flux coming directly from the reactor and measured in the nearby detectors that are about 500 meters away. The deficit allowed scientists to determine the value of the so-called mixing angle (theta one-three, or è13), the last to be measured of three mixing angles needed to interpret neutrinos’ flavor-changing behavior.

“Although we’re still two detectors shy of the complete experimental design, we’ve had extraordinary success in detecting the number of electron antineutrinos that disappear as they travel from the reactors to the detectors nearly two kilometers away,” Luk said.

Neutrinos interact so weakly with other types of matter that they can pass through Earth as if it were not there. Once thought to be fairly boring, with zero mass and always traveling at the speed of light, neutrinos have proved to be a major challenge to the Standard Model of particle physics. Experiments over the past two decades showed that neutrinos do have mass and change their identity as they oscillate between three flavors: electron, muon and tau.

Neutrinos’ shifting personalities require them to have at least some mass – probably less than one-millionth that of an electron – because that is what causes their strange identity problem. Each flavor of neutrino is a mixture of three different masses that fluctuate with time. Just as a white light composed of red, green and blue shifts its tint as the proportions of each color change, so the type of a neutrino changes as the proportions of the masses oscillate.

“Once a neutrino starts to propagate in space, it’s very hard to tell what its identity is until we remeasure it,” as in the Baya Day experiment, Luk said.

Three numbers, called mixing angles, are part of the equations that describe these oscillations. The largest two were measured earlier in similar experiments – including the KamLand collaboration, in which UC Berkeley and LBNL were active participants – but with detectors set hundreds of kilometers from the neutrino source. The oscillation period associated with the third mixing angle was expected to be so small that a much shorter baseline experiment was needed, hence the Daya Bay collaboration. The six power reactors at Daya Bay and nearby Ling Ao yield millions of quadrillions of electron antineutrinos every second, of which the six detectors recorded tens of thousands between Dec. 24, 2011, and Feb. 17, 2012.

Daya Bay will complete the installation of the remaining two detectors this summer to obtain more data about neutrino oscillations. As a result, Daya Bay will continue to have an interaction rate higher than three competing experiments in France, South Korea and Japan , making it “the leading theta one-three experiment in the world,” said William Edwards, a specialist in the physics department at UC Berkeley and LBNL and the U.S. project and operations manager for the Daya Bay experiment.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>