Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a new magnetic order

01.08.2011
Physicists from Juelich, Kiel and Hamburg identify an atomic-scale magnetic lattice of cycloidal vortices in a thin metal film

Physicists at Forschungszentrum Jülich and the universities of Kiel and Hamburg are the first to discover a regular lattice of stable magnetic skyrmions – radial spiral structures made up of atomic-scale spins – on a surface instead of in bulk materials.

Such tiny formations could one day form the basis of a new generation of smaller and more efficient data storage units in the field of information technology. The scientists discovered the magnetic spirals, each made up of just 15 atoms, in a one-atomic-layer of iron on iridium. They present their results in the current issue of the scientific journal Nature Physics (DOI: 10.1038/NPHYS2045).

The existence of magnetic skyrmions was already predicted over 20 years ago, but was first proven experimentally in 2009; a group of research scientists from the Technische Universität München (TUM) had identified lattices of magnetic vortices in manganese silicon in a weak magnetic field. Unlike these structures, the ones now discovered by physicists at Jülich, Kiel and Hamburg exist without an external magnetic field and are located on the surface of the materials examined, instead of inside them. Their diameter amounts to just a few atoms, making them at least one order of magnitude smaller than the skyrmions which have been identified to date.

"The magnetically-stable entities that we have discovered behave like particles and arrange themselves like atoms in a two-dimensional lattice", explains Prof. Stefan Blügel, Director at the Peter Grünberg Institute and the Institute for Advanced Simulation in Jülich. "This discovery is for us a dream come true". Already in 2007, the same scientific team had discovered a new type of magnetic order in a thin manganese film on tungsten and demonstrated the critical significance of the so-called Dzyaloshinskii-Moriya interaction for the formation of its wave-like structure. The same interaction is also necessary for the formation of the spiral-shaped skyrmions.

The scientists did not discover the skyrmion lattice at first attempt. Originally, they wanted to prepare a one-atomic layer of chromium on iridium, in order to investigate the presumed existence of a different magnetic state. As the experiments were unsuccessful, they then tried with other metals. Using spin-polarized scanning tunnelling microscopy in studies of iron on iridium at the University of Hamburg, the researchers noticed regular magnetic patterns that were not consistent with the crystalline structure of the metal surface. "We were sure straightaway that we had discovered skyrmions", says Blügel. Intricate calculations undertaken by the Jülich supercomputers subsequently proved him right.

The result is a model describing the formation of the spin alignment through a complex interplay of three interactions: the chiral Dzyaloshinskii-Moriya interaction, the conventional interaction between spins plus a non-linear interaction involving four spins. The model should help, in the future, to selectively influence magnetic structures on surfaces. "We are now planning to investigate the effect of electricity on skyrmions; how do the electron spins of an electric current "ride" the spirals, how do they influence resistance and how are the spirals affected?", says Blügel.

Original publication: Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions; Stefan Heinze, Kirsten von Bergmann, Matthias Menzel, Jens Brede, André Kubetzka, Roland Wiesendanger, Gustav Bihlmayer, Stefan Blügel; Nature Physics, published online: 31.07.2011; DOI: 10.1038/NPHYS2045

Further information:

Forschungszentrum Jülich: http://www.fz-juelich.de/portal/EN/Home/home_node.html
Link to the press release from 10.05.2007 "Supercomputer shows that nanolayers have turning sense" http://www2.fz-juelich.de/portal/index.php?index=163&jahr=2007&cmd=show&mid=480

Research at the Institute "Quantum Theory of Materials": http://www.fz-juelich.de/sid_2C0C0844209B1401BD3B0B651A1E88C0/pgi/pgi-1/EN/Home/home_node.html

Contact: Prof. Stefan Blügel, Quantum Theory of Materials, Forschungszentrum Jülich, Tel. +49 2461 61-4249, Email: s.bluegel@fz-juelich.de

Press contact: Angela Wenzik, Science Journalist, Forschungszentrum Jülich, Tel: +49 2461 61-6048, Email: a.wenzik@fz-juelich.de

Angela Wenzik | EurekAlert!
Further information:
http://www.fz-juelich.de

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>