Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering the birth of an asteroid trail

22.02.2013
Unlike comets, asteroids are not characterised by exhibiting a trail, but there are now ten exceptions. Spanish researchers have observed one of these rare asteroids from the Gran Telescopio Canarias (Spain) and have discovered that something happened around the 1st July 2011 causing its trail to appear: maybe internal rupture or collision with another asteroid.

Ten asteroids have been located to date that at least at one moment have displayed a trail like that of comets. They are named main-belt comets (MBC) as they have a typical asteroidal orbit but display a trail at the same time. This means that their dust (and possibly gas) emission activity is like comets.


This is an artistic representation of asteroid P/2012 F5. Credit: SINC

One of these objects, baptised as P/2012 F5 (Gibbs), was discovered in March 2012 from the Mount Lemmon Observatory in Arizona (USA). In May and June of that year, Spanish astrophysicists from the Gran Telescopio Canarias tracked it and have discovered when the trail was born using mathematic calculations.

"Our models indicate that it was caused by an impulsive short-lived event lasting just a few hours around the 1st July, 2011, with an uncertainty of 20 days," as explained to SINC by Fernando Moreno, researcher at the Astrophysics Institute of Andalusia (CSIC). In collaboration with other colleagues from the Astrophysics Institute of the Canary Islands and the University of La Laguna, the data have been published in the 'The Astrophysical Journal Letters'.

The telescope images reveal "a fine and elongated dust structure that coincides exactly with the synchrone of that day," says Moreno. For a given observation date, a synchrone is the position in the sky of the particles emitted from these types of objects with zero speed in an instant of time. In this case the synchrone of the 1st July, 2011 is the best adapted to the fine trail.

The width and varying brightness of the head to the end of the trail allowed for the researchers to deduce the physical properties of the particles and proportions of their different sizes.

As for the maximum size and speed values of the liberated particles, the team has calculated that the asteroid should have a radius of between 100 m and 150 m and the dust mass emitted should be about half a million tonnes.

The researchers juggled two possible theories for the origin of the P/2012 F5 trail: "It could have arisen from collision with another asteroid or rather a rotational rupture." The second mechanism consists of material gradually breaking free after partial fragmentation of the asteroid.

In turn, the rapid spinning of the asteroid, "like an accelerating carousel" causes pieces to break off. The rotation speed of small asteroids can increase over time due to the Yarkovsky effect (YORP effect for short). This can induce acceleration due to the thermal differences of the different surface regions of the asteroid, eventually leading to rupture.

Moreno indicates that, from the brightness distribution of the trail, "we have verified that the dependence of the speed of particle ejection on size is very weak, in accordance with what we already obtained for the other asteroid of this group: 596 Scheila, which probably suffered a collision."

MBC activated asteroids

MBCs are main-belt asteroids situated at a distance of between 2 and 3.2 astronomical units, which is the average distance between the Earth and the Sun. For some reason they become active and emit dust. For now they have not been found to generate gas but this could be due to the fact that they are weak at the very moment of observation.

Since the first discovery of an MBC in 1996, the 133P/Elst-Pizarro, a total of ten have now been found. The presence of a trail in some has lasted for a relatively long period of a few months, like in the cases of 2006 VW139 and P/2010 R2 (La Sagra). The latter was discovered from an observatory of the same name in Granada. Its activity could have been due to an ice sublimation which could have released the gas, although this has not been detected.

In other cases, however, activity developed during a short period of time, like in the case of 596 Scheila. Its dust cloud dissipated very quickly in a matter of hardly three or four weeks following its detection.

There are also examples of MBCs that have shown recurrent activity, like 133P/Elst-Pizarro and 238P, which have displayed a trail on more than one occasion.

In the case of P/2012 F5, it is still unknown what group it belongs to. More data will be available when it can be observed again in good conditions next year in around July or August 2014.

The last documented MBC to date is the so-called P/2012 T1 (PANSTARRS), which Spanish astrophysicist are also analysing. Like what has happened with exoplanets, many more main-belt comets will start appearing in the coming years.

References:

Fernando Moreno, Javier Licandro, Antonio Cabrera-Lavers. "A short-duration event as the cause of dust ejection from Main-Belt Comet P/2012 F5 (Gibbs)". The Astrophysical Journal Letters 761 (1), December 2012. Doi: 10.1088/2041-8205/761/1/L12.

SINC | EurekAlert!
Further information:
http://www.fecyt.es

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>