Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering a hidden source of solar surges

04.06.2014

Cutting-edge observations with the 1.6-meter telescope at Big Bear Solar Observatory (BBSO) in California have taken research into the structure and activity of the Sun to new levels of understanding. Operated by New Jersey Institute of Technology (NJIT), the telescope at Big Bear is the most powerful ground-based instrument dedicated to studying the Sun.

A group of astronomers led by Dr. Santiago Vargas Domínguez has analyzed the highest- resolution solar observations ever made. A summary of their work at BBSO was presented on June 2 at the 224th meeting of the American Astronomical Society, held in Boston, Massachusetts.

The NJIT researchers reported on the emergence of buoyant "small-scale" magnetic-flux ropes on the solar surface and the initiation of powerful plasma eruptions in the solar atmosphere. The observations were performed as part of a program conducted jointly with NASA's Interface Region Imaging Spectrograph (IRIS) mission, Solar Dynamics Observatory (SDO) and Hinode satellite.

These observations provided a unique view of a magnetic-flux rope in the Sun's surface-granulation pattern that was 6,000 miles long, and the interaction between newly emergent and overlying ambient magnetic fields.

Solar activity entails numerous processes occurring in the star nearest to Earth. These processes have far-reaching effects, generating "space weather" that brings bursts of charged particles and high-energy radiation in the direction of Earth at nearly the speed of light.

The magnetic field generated in the solar interior and brought to the surface creates a wide variety of structures, with sunspots being the most well-known. Sunspots can cover large areas of the surface of the Sun — up to several times the size of Earth. They can persist for weeks or even months before vanishing. Associated with the evolution of sunspots, solar flares and coronal mass ejections are especially intense during the solar maximum, the period of greatest activity in the 11-year solar cycle.

Multiple phenomena can also occur on "smaller" spatial scales of several thousand miles, and in a matter of minutes. Believed to be driven by the interaction of magnetic fields, these events occur with greater frequency and appear to be directly responsible for continuous heating of the solar atmosphere.

The combination of ground- and space-based observations has facilitated investigation of how the layers of the solar atmosphere are linked, from the surface to the outermost layer, the corona. This has yielded important new understanding of solar activity and the mechanisms that drive it. In particular, the NJIT team led by Vargas Dominguez discovered previously unknown factors responsible for the generation of plasma surges and heating of the solar atmosphere.

A series of images acquired in the course of this work recorded the evolution of the solar surface and atmosphere at 15-second intervals with a spatial resolution of approximately 40 miles per pixel. The researchers discovered that the solar surges can be triggered by buoyant magnetic-flux ropes that emerge briefly on the surface and interact with ambient magnetic fields. The 6,000-mile magnetic-flux rope observed rose up from the solar interior, stretched the granulation patterns, and traversed the surface of the Sun, which is dominated by convective motion. The pattern of convective cells seen, known as granulation, consists of granules analogous to bubbles in boiling water.

In the Sun, convection takes place in plasma at a temperature of 10,000 degrees Fahrenheit. At any given time, the Sun´s surface is covered by about four million granules. The area covered by just a few of these granules is as large as the continental United States. When a magnetic rope interacts with the granulation, it deforms the cells and they increase to some five times their original size. And as they rise, newly emergent magnetic fields hit pre-existing ambient fields. The NJIT researchers discovered that an effect of this interaction, known as reconnection, is localized heating on the order of hundreds of thousands of degrees and the production of a surge in which plasma is rapidly accelerated to a speed of 70,000 miles per hour within 10 minutes.

This research has shown that the complex action of small-scale and "hidden" fields on the Sun is important for understanding how energy is transported to the solar atmosphere. The process investigated can play a significant role in mass and energy flow from the Sun's interior to the corona, the solar wind and Earth's near-space environment.

###

Funding for this research has been provided by AFORS, NASA, NSF and NJIT.

For more information, including images and video, visit http://bbso.njit.edu.

The results of this investigation submitted to the Astrophysical Journal are available at http://arxiv.org/abs/1405.3550.

BBSO contacts:

Santiago Vargas Domínguez
svargas@bbso.njit.edu, (909) 496-9347

Alexander Kosovichev
sasha@bbso.njit.edu, (408) 239-6871

Vasyl Yurchyshyn
vayur@bbso.njit.edu

Tanya Klein | Eurek Alert!

Further reports about: BBSO Discovering NJIT Sun activity atmosphere discovered granules heating observations processes

More articles from Physics and Astronomy:

nachricht Superconductivity: footballs with no resistance
09.02.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht A deep look into a single molecule
09.02.2016 | Physikalisch-Technische Bundesanstalt (PTB)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

Body temperature triggers newly developed polymer to change shape

09.02.2016 | Materials Sciences

Using renewable energy in heating networks more efficiently

09.02.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>