Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovered after 40 years: Moon dust hazard influenced by Sun's elevation

20.04.2009
In the 1960s and 1970s, the Apollo Moon Program struggled with a minuscule, yet formidable enemy: sticky lunar dust. Four decades later, a new study reveals that forces compelling lunar dust to cling to surfaces -- ruining scientific experiments and endangering astronauts' health -- change during the lunar day with the elevation of the sun.

The study analyzes the interactions on the Moon among electrostatic adhesive forces, the angle of incidence of the sun's rays, and lunar gravity. It concludes that the stickiness of lunar dust on a vertical surface changes as the sun moves higher in the sky, eventually allowing the very weak lunar gravity to pull the dust off.

The study has been accepted for publication in Geophysical Research Letters, a publication of the American Geophysical Union (AGU.)

"Before you can manage the dust, you have to understand what makes it sticky," says Brian O'Brien, the sole author of the paper. His analysis is the first to measure the strength of lunar dust's adhesive forces, how they change during the lunar day -- which lasts 710 hours -- and differ on vertical and horizontal surfaces. O'Brien used data from the matchbox-sized Dust Detector Experiments deployed on the Moon's surface in 1969 during the Apollo 11 and Apollo

12 missions.

Lunar dust has long been described as the No. 1 environmental hazard on the Moon. It causes miscellaneous havoc: from destroying scientific equipment deployed on the lunar surface -- dusty surfaces absorb more sunlight and make devices overheat -- to creating blinding dust clouds that interfere with lunar landings. It also may be a health hazard to space travelers, since dust clinging to space suits detaches when astronauts reenter their lunar module. It then floats free in zero gravity, ready to be inhaled, during the 3-day journey back to Earth.

Lunar dust particles are minuscule, with an average size of 70 micrometers, the thickness of a human hair. The particles get positively charged by photoelectric effects caused by powerful solar ultraviolet radiation and X-rays -- the thin lunar atmosphere does not attenuate solar radiation -- generating strong electrostatic adhesive forces which compel the specks of dust to cling to surfaces of scientific instruments and space suits.

In his new study, O'Brien analyzed the behavior of dust on horizontal and vertical solar cells in one of the Apollo dust-detecting experiments. On the first morning of the experiment, the lunar module -- 130 meters (426 feet) away from the dust detector -- took off from the Moon's surface. The blast of exhaust gases completely cleansed a dusty horizontal solar cell, because it was illuminated only by weak early-morning light and thus the adhesive force of dust was faint. But only half the dust covering the vertical cell was removed by the blast, because its surface faced east -- into more intense sunlight-- and thus the sticky forces were stronger.

O'Brien found that later, as the sun rose and the angle of incidence of the sun's rays on the dusty vertical surface facing east decreased, the electrostatic forces on the vertical cell weakened. The tipping point was reached when the sun was at an angle of about 45 degrees: then the pull of lunar gravity counteracted the adhesive forces and made the dust start falling off. All dust had fallen by lunar night.

"These are the first measurements of the collapse of the cohesive forces that make lunar dust so sticky" O'Brien says.

In 1965, NASA selected O'Brien, an Australian physicist who was then a professor of Space Science at Rice University in Houston, Texas, to be the principal investigator in one of seven lunar experiments designed for the Apollo Program. O'Brien started researching lunar dust in 1966 because he feared for an instrument he developed that was to be left behind on the Moon by the Apollo 14 mission. He worried that the device, which measured the flux of charged particles, would end up covered in dust and ruined. Lunar dust is "a bloody nuisance," he says.

In 1970, O'Brien published a paper which he says proved that rocket exhaust gases from the Apollo 11 Lunar Module had lofted dust and debris which then coated the surface of a lunar seismometer -- the first instrument deployed by human hands on a celestial body. The seismometer then overheated by 50 degrees and failed after three weeks' operation. An official 1969 NASA report was incorrect in stating that no contamination had occurred, O'Brien says.

But it wasn't until late 2006, when O'Brien learned from NASA's website that the space agency had misplaced data tapes from its dust-detecting experiments, that he decided to revisit his own set of 173 tapes. NASA had sent him these tapes one by one in 1969 and 1970, when he was working at the Department of Physics at University of Sydney. He took them with him when, in 1971, he moved to Perth for a new job. O'Brien's tapes are now the only known record of data from those vintage experiments.

Working alone and self-funded, the 75-year-old scientist dedicated two years to analyzing paper charts printed out in 1969 and 1970 from the magnetic tapes, which contain 6 million measurements, most of them yet to be analyzed.

For future Moon and Mars missions, O'Brien offers a practical solution to the dust hazard: Use a wide sun-proof shed, to block the rays that enhance dust's adhesive forces.

"Getting closer to understanding the physics of the lunar dust problems means moving one giant step towards management of the hazards," O'Brien says.

Peter Weiss | American Geophysical Union
Further information:
http://dx.doi.org/10.1029/2008GL037116
http://www.agu.org

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>