Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovered after 40 years: Moon dust hazard influenced by Sun's elevation

20.04.2009
In the 1960s and 1970s, the Apollo Moon Program struggled with a minuscule, yet formidable enemy: sticky lunar dust. Four decades later, a new study reveals that forces compelling lunar dust to cling to surfaces -- ruining scientific experiments and endangering astronauts' health -- change during the lunar day with the elevation of the sun.

The study analyzes the interactions on the Moon among electrostatic adhesive forces, the angle of incidence of the sun's rays, and lunar gravity. It concludes that the stickiness of lunar dust on a vertical surface changes as the sun moves higher in the sky, eventually allowing the very weak lunar gravity to pull the dust off.

The study has been accepted for publication in Geophysical Research Letters, a publication of the American Geophysical Union (AGU.)

"Before you can manage the dust, you have to understand what makes it sticky," says Brian O'Brien, the sole author of the paper. His analysis is the first to measure the strength of lunar dust's adhesive forces, how they change during the lunar day -- which lasts 710 hours -- and differ on vertical and horizontal surfaces. O'Brien used data from the matchbox-sized Dust Detector Experiments deployed on the Moon's surface in 1969 during the Apollo 11 and Apollo

12 missions.

Lunar dust has long been described as the No. 1 environmental hazard on the Moon. It causes miscellaneous havoc: from destroying scientific equipment deployed on the lunar surface -- dusty surfaces absorb more sunlight and make devices overheat -- to creating blinding dust clouds that interfere with lunar landings. It also may be a health hazard to space travelers, since dust clinging to space suits detaches when astronauts reenter their lunar module. It then floats free in zero gravity, ready to be inhaled, during the 3-day journey back to Earth.

Lunar dust particles are minuscule, with an average size of 70 micrometers, the thickness of a human hair. The particles get positively charged by photoelectric effects caused by powerful solar ultraviolet radiation and X-rays -- the thin lunar atmosphere does not attenuate solar radiation -- generating strong electrostatic adhesive forces which compel the specks of dust to cling to surfaces of scientific instruments and space suits.

In his new study, O'Brien analyzed the behavior of dust on horizontal and vertical solar cells in one of the Apollo dust-detecting experiments. On the first morning of the experiment, the lunar module -- 130 meters (426 feet) away from the dust detector -- took off from the Moon's surface. The blast of exhaust gases completely cleansed a dusty horizontal solar cell, because it was illuminated only by weak early-morning light and thus the adhesive force of dust was faint. But only half the dust covering the vertical cell was removed by the blast, because its surface faced east -- into more intense sunlight-- and thus the sticky forces were stronger.

O'Brien found that later, as the sun rose and the angle of incidence of the sun's rays on the dusty vertical surface facing east decreased, the electrostatic forces on the vertical cell weakened. The tipping point was reached when the sun was at an angle of about 45 degrees: then the pull of lunar gravity counteracted the adhesive forces and made the dust start falling off. All dust had fallen by lunar night.

"These are the first measurements of the collapse of the cohesive forces that make lunar dust so sticky" O'Brien says.

In 1965, NASA selected O'Brien, an Australian physicist who was then a professor of Space Science at Rice University in Houston, Texas, to be the principal investigator in one of seven lunar experiments designed for the Apollo Program. O'Brien started researching lunar dust in 1966 because he feared for an instrument he developed that was to be left behind on the Moon by the Apollo 14 mission. He worried that the device, which measured the flux of charged particles, would end up covered in dust and ruined. Lunar dust is "a bloody nuisance," he says.

In 1970, O'Brien published a paper which he says proved that rocket exhaust gases from the Apollo 11 Lunar Module had lofted dust and debris which then coated the surface of a lunar seismometer -- the first instrument deployed by human hands on a celestial body. The seismometer then overheated by 50 degrees and failed after three weeks' operation. An official 1969 NASA report was incorrect in stating that no contamination had occurred, O'Brien says.

But it wasn't until late 2006, when O'Brien learned from NASA's website that the space agency had misplaced data tapes from its dust-detecting experiments, that he decided to revisit his own set of 173 tapes. NASA had sent him these tapes one by one in 1969 and 1970, when he was working at the Department of Physics at University of Sydney. He took them with him when, in 1971, he moved to Perth for a new job. O'Brien's tapes are now the only known record of data from those vintage experiments.

Working alone and self-funded, the 75-year-old scientist dedicated two years to analyzing paper charts printed out in 1969 and 1970 from the magnetic tapes, which contain 6 million measurements, most of them yet to be analyzed.

For future Moon and Mars missions, O'Brien offers a practical solution to the dust hazard: Use a wide sun-proof shed, to block the rays that enhance dust's adhesive forces.

"Getting closer to understanding the physics of the lunar dust problems means moving one giant step towards management of the hazards," O'Brien says.

Peter Weiss | American Geophysical Union
Further information:
http://dx.doi.org/10.1029/2008GL037116
http://www.agu.org

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>