Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dilating time with superconductors

26.01.2009
Solitary waves trapped in superconducting junctions could illustrate time dilation effects similar to those in special relativity

Solitary waves, known as solitons, can be striking. The first observation of a soliton was documented in 1834: a large moving heap of water formed by a boat on a canal in Scotland. Since then, solitons have been found in many areas of science including nonlinear optics, condensed matter physics, astrophysics (for example Jupiter's red spots), and biology (during energy transfer in DNA).

Solitons can also be found in a so-called Josephson junction, where a thin insulating layer is sandwiched between two superconductors. A team, including RIKEN scientists at the Advanced Science Institute in Wako, has discovered a new type of soliton excitation in a Josephson junction that could be used to measure time dilation effects similar to those in Einstein’s special relativity (1).

In a Josephson junction, the role of a soliton is played by a ‘Josephson vortex’—a lump of magnetic field that can be accelerated inside the material (2). When a Josephson vortex approaches the speed of light for the material, it should start to experience relativistic effects. One of these effects, the Lorentz (length) contraction of solitons, has been observed in experiments. However the measurement of another relativistic effect, time dilation, has been a challenge.

“It has been difficult to observe time dilation for a moving Josephson vortex because we need something internal acting as a clock to measure time in its frame of reference,” explains team member Franco Nori from RIKEN and the University of Michigan, USA. “We can’t find such a clock in conventional Josephson junctions, but we found one that can exist in vortices in long, wide Josephson junctions.”

The ‘clock’ discovered by Nori and co-workers is a nonlinear wave that propagates along Josephson vortices, and therefore belongs to the vortex frame of reference. The excitations are associated with distortions in the Josephson vortices, and are similar to shear waves in solids. They can have almost any shape and retain it for a long time while the wave is propagating.

“The new excitation that we discovered can act as the ‘minute hand’ of a clock, keeping track of time in the frame of reference of a moving soliton,” says team member Dmitry Gulevich from Loughborough University, UK, and RIKEN.

Feo Kusmartsev and Sergey Savel’ev, also from Loughborough University, add: “This effect could be used to transmit information, and as waveguides for Terahertz radiation.” The research team plans to put the predicted effect into practice in the near future.

Reference

1. Gulevich, D.R., Kusmartsev, F.V., Savel’ev, S., Yampol’skii, V.A. & Nori, F. Shape waves in 2D Josephson junctions: Exact solutions and time dilation. Physical Review Letters 101, 127002 (2008).

2. Gulevich, D.R., Savel’ev, S., Yampol'skii, V.A. Kusmartsev, F.V. and Nori, F. Josephson vortices as flexible waveguides for terahertz waves. Journal of Applied Physics 104, 064507 (2008).

The corresponding author for this highlight is based at the RIKEN Digital Materials Team

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/630/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>