Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dilating time with superconductors

Solitary waves trapped in superconducting junctions could illustrate time dilation effects similar to those in special relativity

Solitary waves, known as solitons, can be striking. The first observation of a soliton was documented in 1834: a large moving heap of water formed by a boat on a canal in Scotland. Since then, solitons have been found in many areas of science including nonlinear optics, condensed matter physics, astrophysics (for example Jupiter's red spots), and biology (during energy transfer in DNA).

Solitons can also be found in a so-called Josephson junction, where a thin insulating layer is sandwiched between two superconductors. A team, including RIKEN scientists at the Advanced Science Institute in Wako, has discovered a new type of soliton excitation in a Josephson junction that could be used to measure time dilation effects similar to those in Einstein’s special relativity (1).

In a Josephson junction, the role of a soliton is played by a ‘Josephson vortex’—a lump of magnetic field that can be accelerated inside the material (2). When a Josephson vortex approaches the speed of light for the material, it should start to experience relativistic effects. One of these effects, the Lorentz (length) contraction of solitons, has been observed in experiments. However the measurement of another relativistic effect, time dilation, has been a challenge.

“It has been difficult to observe time dilation for a moving Josephson vortex because we need something internal acting as a clock to measure time in its frame of reference,” explains team member Franco Nori from RIKEN and the University of Michigan, USA. “We can’t find such a clock in conventional Josephson junctions, but we found one that can exist in vortices in long, wide Josephson junctions.”

The ‘clock’ discovered by Nori and co-workers is a nonlinear wave that propagates along Josephson vortices, and therefore belongs to the vortex frame of reference. The excitations are associated with distortions in the Josephson vortices, and are similar to shear waves in solids. They can have almost any shape and retain it for a long time while the wave is propagating.

“The new excitation that we discovered can act as the ‘minute hand’ of a clock, keeping track of time in the frame of reference of a moving soliton,” says team member Dmitry Gulevich from Loughborough University, UK, and RIKEN.

Feo Kusmartsev and Sergey Savel’ev, also from Loughborough University, add: “This effect could be used to transmit information, and as waveguides for Terahertz radiation.” The research team plans to put the predicted effect into practice in the near future.


1. Gulevich, D.R., Kusmartsev, F.V., Savel’ev, S., Yampol’skii, V.A. & Nori, F. Shape waves in 2D Josephson junctions: Exact solutions and time dilation. Physical Review Letters 101, 127002 (2008).

2. Gulevich, D.R., Savel’ev, S., Yampol'skii, V.A. Kusmartsev, F.V. and Nori, F. Josephson vortices as flexible waveguides for terahertz waves. Journal of Applied Physics 104, 064507 (2008).

The corresponding author for this highlight is based at the RIKEN Digital Materials Team

Saeko Okada | ResearchSEA
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>