Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamonds May Be the Ultimate MRI Probe

24.09.2009
Diamonds, it has long been said, are a girl’s best friend. But a research team including a physicist from the National Institute of Standards and Technology (NIST) has recently found* that the gems might turn out to be a patient’s best friend as well.

The team’s work has the long-term goal of developing quantum computers, but it has borne fruit that may have more immediate application in medical science. Their finding that a candidate “quantum bit” has great sensitivity to magnetic fields hints that MRI-like devices that can probe individual drug molecules and living cells may be possible.

The candidate system, formed from a nitrogen atom lodged within a diamond crystal, is promising not only because it can sense atomic-scale variations in magnetism, but also because it functions at room temperature. Most other such devices used either in quantum computation or for magnetic sensing must be cooled to nearly absolute zero to operate, making it difficult to place them near live tissue. However, using the nitrogen as a sensor or switch could sidestep that limitation.

Diamond, which is formed of pure carbon, occasionally has minute imperfections within its crystalline lattice. A common impurity is a “nitrogen vacancy”, in which two carbon atoms are replaced by a single atom of nitrogen, leaving the other carbon atom’s space vacant. Nitrogen vacancies are in part responsible for diamond’s famed luster, for they are actually fluorescent: when green light strikes them, the nitrogen atom’s two excitable unpaired electrons glow a brilliant red.

The team can use slight variations in this fluorescence to determine the magnetic spin of a single electron in the nitrogen. Spin is a quantum property that has a value of either “up” or “down,” and therefore could represent one or zero in binary computation. The team’s recent achievement was to transfer this quantum information repeatedly between the nitrogen electron and the nuclei of adjacent carbon atoms, forming a small circuit capable of logic operations. Reading a quantum bit’s spin information—a fundamental task for a quantum computer—has been a daunting challenge, but the team demonstrated that by transferring the information back and forth between the electron and the nuclei, the information could be amplified, making it much easier to read.

Still, NIST theoretical physicist Jacob Taylor said the findings are “evolutionary, not revolutionary” for the quantum computing field and that the medical world may reap practical benefits from the discovery long before a working quantum computer is built. He envisions diamond-tipped sensors performing magnetic resonance tests on individual cells within the body, or on single molecules drug companies want to investigate—a sort of MRI scanner for the microscopic. “That’s commonly thought not to be possible because in both of these cases the magnetic fields are so small,” Taylor says. “But this technique has very low toxicity and can be done at room temperature. It could potentially look inside a single cell and allow us to visualize what’s happening in different spots.”

The Harvard University-based team also includes scientists from the Joint Quantum Institute (a partnership of NIST and the University of Maryland), the Massachusetts Institute of Technology and Texas A&M University.

* L. Jiang, J.S. Hodges, J.R. Maze, P. Maurer, J.M. Taylor, D.G. Cory, P.R. Hemmer, R.L. Walsworth, A. Yacoby, A.S. Zibrov and M.D. Lukin. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science, DOI: 10.1126/science.1176496, published online Sept. 10, 2009.

Chad Boutin | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Light-emitting bubbles captured in the wild
28.02.2017 | Georg-August-Universität Göttingen

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Light-emitting bubbles captured in the wild

28.02.2017 | Physics and Astronomy

Triboelectric nanogenerators boost mass spectrometry performance

28.02.2017 | Materials Sciences

Calculating recharge of groundwater more precisely

28.02.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>