Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamonds May Be the Ultimate MRI Probe

24.09.2009
Diamonds, it has long been said, are a girl’s best friend. But a research team including a physicist from the National Institute of Standards and Technology (NIST) has recently found* that the gems might turn out to be a patient’s best friend as well.

The team’s work has the long-term goal of developing quantum computers, but it has borne fruit that may have more immediate application in medical science. Their finding that a candidate “quantum bit” has great sensitivity to magnetic fields hints that MRI-like devices that can probe individual drug molecules and living cells may be possible.

The candidate system, formed from a nitrogen atom lodged within a diamond crystal, is promising not only because it can sense atomic-scale variations in magnetism, but also because it functions at room temperature. Most other such devices used either in quantum computation or for magnetic sensing must be cooled to nearly absolute zero to operate, making it difficult to place them near live tissue. However, using the nitrogen as a sensor or switch could sidestep that limitation.

Diamond, which is formed of pure carbon, occasionally has minute imperfections within its crystalline lattice. A common impurity is a “nitrogen vacancy”, in which two carbon atoms are replaced by a single atom of nitrogen, leaving the other carbon atom’s space vacant. Nitrogen vacancies are in part responsible for diamond’s famed luster, for they are actually fluorescent: when green light strikes them, the nitrogen atom’s two excitable unpaired electrons glow a brilliant red.

The team can use slight variations in this fluorescence to determine the magnetic spin of a single electron in the nitrogen. Spin is a quantum property that has a value of either “up” or “down,” and therefore could represent one or zero in binary computation. The team’s recent achievement was to transfer this quantum information repeatedly between the nitrogen electron and the nuclei of adjacent carbon atoms, forming a small circuit capable of logic operations. Reading a quantum bit’s spin information—a fundamental task for a quantum computer—has been a daunting challenge, but the team demonstrated that by transferring the information back and forth between the electron and the nuclei, the information could be amplified, making it much easier to read.

Still, NIST theoretical physicist Jacob Taylor said the findings are “evolutionary, not revolutionary” for the quantum computing field and that the medical world may reap practical benefits from the discovery long before a working quantum computer is built. He envisions diamond-tipped sensors performing magnetic resonance tests on individual cells within the body, or on single molecules drug companies want to investigate—a sort of MRI scanner for the microscopic. “That’s commonly thought not to be possible because in both of these cases the magnetic fields are so small,” Taylor says. “But this technique has very low toxicity and can be done at room temperature. It could potentially look inside a single cell and allow us to visualize what’s happening in different spots.”

The Harvard University-based team also includes scientists from the Joint Quantum Institute (a partnership of NIST and the University of Maryland), the Massachusetts Institute of Technology and Texas A&M University.

* L. Jiang, J.S. Hodges, J.R. Maze, P. Maurer, J.M. Taylor, D.G. Cory, P.R. Hemmer, R.L. Walsworth, A. Yacoby, A.S. Zibrov and M.D. Lukin. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science, DOI: 10.1126/science.1176496, published online Sept. 10, 2009.

Chad Boutin | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>