Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamonds shine in quantum networks

27.04.2011
Researchers hitch precious stone's impurities onto nano-resonators

When it comes to dreaming about diamonds, energy efficiency and powerful information processing aren't normally the thoughts that spring to mind. Unless, of course, you are a quantum physicist looking to create the most secure and powerful networks around.

Researchers at the University of Calgary and Hewlett Packard Labs in Palo Alto, California, have come up with a way to use impurities in diamonds as a method of creating a node in a quantum network. In addition to making powerful and secure networks, this discovery may also help sensitive measurements of magnetic fields and create new powerful platforms useful for applications in biology.

"Impurities in diamonds have recently been used to store information encoded onto their quantum state, which can be controlled and read out using light. But coming up with robust way to create connections needed to pass on signals between these impurities is difficult," says Dr. Paul Barclay, who recently moved to Calgary to start labs at the University of Calgary in the Institute for Quantum Information Science and at the National Institute for Nanotechnology in Edmonton.

"We have taken an important step towards achieving this," adds Barclay.

Barclay and colleagues Dr. Andrei Faraon, Dr. Kai-Mei Fu, Dr. Charles Santori and Dr. Ray Beausoleil from Hewlett Packard have published a paper on their research in the journal Nature Photonics.

Impurities in diamonds are responsible for slightly altering the material's colour, typically adding a slight red or yellow tint. The "NV center" impurity, which consists of a nitrogen atom and a vacancy in otherwise perfect diamond carbon lattice, has quantum properties that researchers are learning to exploit for useful applications.

In principle, individual particles of light, photons, can be used to transfer this quantum information between impurities, each of which could be a node in a quantum network used for energy efficient and powerful information processing. In practice, this is challenging to demonstrate because of the small size of the impurities (a few nanometers) and the experimental complexity that comes along with studying and controlling several nanoscale quantum systems at once.

Researchers at Hewlett Packard Labs and Barclay, who worked on this research at HP and is now a professor in the Department on Physics and Astronomy at the University of Calgary, have created photonic "microring resonators" on diamond chips. These microrings are designed to efficiently channel light between diamond impurities, and an on-chip photonic circuit connected to quantum impurities at other locations on the chip.

In future work, this microring will be connected to other components on the diamond chip, and light will be routed between impurities.

"This work demonstrates the important connection between fundamental physics, blue sky applications, and near-term problem solving. It involves many of the same concepts being pushed by companies such as HP, IBM, and Intel who are beginning to integrate photonics with computer hardware to increase performance and reduce the major problem of heat generation," says Barclay.

The article, Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity, is written Andrei Faraon, Kai-Mei Fu, Charles Santori and Ray Beausoleil (Hewlett Packard) and Paul Barclay (Hewlett Packard and University of Calgary), and is published in the recent on-line edition of Nature Photonics.

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>